@article{10888, abstract = {Despite the growing interest in using chemical genetics in plant research, small molecule target identification remains a major challenge. The cellular thermal shift assay coupled with high-resolution mass spectrometry (CETSA MS) that monitors changes in the thermal stability of proteins caused by their interactions with small molecules, other proteins, or posttranslational modifications, allows the discovery of drug targets or the study of protein–metabolite and protein–protein interactions mainly in mammalian cells. To showcase the applicability of this method in plants, we applied CETSA MS to intact Arabidopsis thaliana cells and identified the thermal proteome of the plant-specific glycogen synthase kinase 3 (GSK3) inhibitor, bikinin. A comparison between the thermal and the phosphoproteomes of bikinin revealed the auxin efflux carrier PIN-FORMED1 (PIN1) as a substrate of the Arabidopsis GSK3s that negatively regulate the brassinosteroid signaling. We established that PIN1 phosphorylation by the GSK3s is essential for maintaining its intracellular polarity that is required for auxin-mediated regulation of vascular patterning in the leaf, thus revealing cross-talk between brassinosteroid and auxin signaling.}, author = {Lu, Qing and Zhang, Yonghong and Hellner, Joakim and Giannini, Caterina and Xu, Xiangyu and Pauwels, Jarne and Ma, Qian and Dejonghe, Wim and Han, Huibin and Van De Cotte, Brigitte and Impens, Francis and Gevaert, Kris and De Smet, Ive and Friml, Jiří and Molina, Daniel Martinez and Russinova, Eugenia}, issn = {1091-6490}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {11}, publisher = {Proceedings of the National Academy of Sciences}, title = {{Proteome-wide cellular thermal shift assay reveals unexpected cross-talk between brassinosteroid and auxin signaling}}, doi = {10.1073/pnas.2118220119}, volume = {119}, year = {2022}, } @article{12121, abstract = {Autophagosomes are double-membraned vesicles that traffic harmful or unwanted cellular macromolecules to the vacuole for recycling. Although autophagosome biogenesis has been extensively studied, autophagosome maturation, i.e., delivery and fusion with the vacuole, remains largely unknown in plants. Here, we have identified an autophagy adaptor, CFS1, that directly interacts with the autophagosome marker ATG8 and localizes on both membranes of the autophagosome. Autophagosomes form normally in Arabidopsis thaliana cfs1 mutants, but their delivery to the vacuole is disrupted. CFS1’s function is evolutionarily conserved in plants, as it also localizes to the autophagosomes and plays a role in autophagic flux in the liverwort Marchantia polymorpha. CFS1 regulates autophagic flux by bridging autophagosomes with the multivesicular body-localized ESCRT-I component VPS23A, leading to the formation of amphisomes. Similar to CFS1-ATG8 interaction, disrupting the CFS1-VPS23A interaction blocks autophagic flux and renders plants sensitive to nitrogen starvation. Altogether, our results reveal a conserved vacuolar sorting hub that regulates autophagic flux in plants.}, author = {Zhao, Jierui and Bui, Mai Thu and Ma, Juncai and Künzl, Fabian and Picchianti, Lorenzo and De La Concepcion, Juan Carlos and Chen, Yixuan and Petsangouraki, Sofia and Mohseni, Azadeh and García-Leon, Marta and Gomez, Marta Salas and Giannini, Caterina and Gwennogan, Dubois and Kobylinska, Roksolana and Clavel, Marion and Schellmann, Swen and Jaillais, Yvon and Friml, Jiří and Kang, Byung-Ho and Dagdas, Yasin}, issn = {1540-8140}, journal = {Journal of Cell Biology}, keywords = {Cell Biology}, number = {12}, publisher = {Rockefeller University Press}, title = {{Plant autophagosomes mature into amphisomes prior to their delivery to the central vacuole}}, doi = {10.1083/jcb.202203139}, volume = {221}, year = {2022}, } @article{12291, abstract = {The phytohormone auxin triggers transcriptional reprogramming through a well-characterized perception machinery in the nucleus. By contrast, mechanisms that underlie fast effects of auxin, such as the regulation of ion fluxes, rapid phosphorylation of proteins or auxin feedback on its transport, remain unclear1,2,3. Whether auxin-binding protein 1 (ABP1) is an auxin receptor has been a source of debate for decades1,4. Here we show that a fraction of Arabidopsis thaliana ABP1 is secreted and binds auxin specifically at an acidic pH that is typical of the apoplast. ABP1 and its plasma-membrane-localized partner, transmembrane kinase 1 (TMK1), are required for the auxin-induced ultrafast global phospho-response and for downstream processes that include the activation of H+-ATPase and accelerated cytoplasmic streaming. abp1 and tmk mutants cannot establish auxin-transporting channels and show defective auxin-induced vasculature formation and regeneration. An ABP1(M2X) variant that lacks the capacity to bind auxin is unable to complement these defects in abp1 mutants. These data indicate that ABP1 is the auxin receptor for TMK1-based cell-surface signalling, which mediates the global phospho-response and auxin canalization.}, author = {Friml, Jiří and Gallei, Michelle C and Gelová, Zuzana and Johnson, Alexander J and Mazur, Ewa and Monzer, Aline and Rodriguez Solovey, Lesia and Roosjen, Mark and Verstraeten, Inge and Živanović, Branka D. and Zou, Minxia and Fiedler, Lukas and Giannini, Caterina and Grones, Peter and Hrtyan, Mónika and Kaufmann, Walter and Kuhn, Andre and Narasimhan, Madhumitha and Randuch, Marek and Rýdza, Nikola and Takahashi, Koji and Tan, Shutang and Teplova, Anastasiia and Kinoshita, Toshinori and Weijers, Dolf and Rakusová, Hana}, issn = {1476-4687}, journal = {Nature}, number = {7927}, pages = {575--581}, publisher = {Springer Nature}, title = {{ABP1–TMK auxin perception for global phosphorylation and auxin canalization}}, doi = {10.1038/s41586-022-05187-x}, volume = {609}, year = {2022}, } @article{13240, abstract = {Ustilago maydis is a biotrophic phytopathogenic fungus that causes corn smut disease. As a well-established model system, U. maydis is genetically fully accessible with large omics datasets available and subject to various biological questions ranging from DNA-repair, RNA-transport, and protein secretion to disease biology. For many genetic approaches, tight control of transgene regulation is important. Here we established an optimised version of the Tetracycline-ON (TetON) system for U. maydis. We demonstrate the Tetracycline concentration-dependent expression of fluorescent protein transgenes and the system’s suitability for the induced expression of the toxic protein BCL2 Associated X-1 (Bax1). The Golden Gate compatible vector system contains a native minimal promoter from the mating factor a-1 encoding gene, mfa with ten copies of the tet-regulated operator (tetO) and a codon optimised Tet-repressor (tetR*) which is translationally fused to the native transcriptional corepressor Mql1 (UMAG_05501). The metabolism-independent transcriptional regulator system is functional both, in liquid culture as well as on solid media in the presence of the inducer and can become a useful tool for toxin-antitoxin studies, identification of antifungal proteins, and to study functions of toxic gene products in Ustilago maydis.}, author = {Ingole, Kishor D. and Nagarajan, Nithya and Uhse, Simon and Giannini, Caterina and Djamei, Armin}, issn = {2673-6128}, journal = {Frontiers in Fungal Biology}, publisher = {Frontiers Media}, title = {{Tetracycline-controlled (TetON) gene expression system for the smut fungus Ustilago maydis}}, doi = {10.3389/ffunb.2022.1029114}, volume = {3}, year = {2022}, }