@article{14257, abstract = {Mapping the complex and dense arrangement of cells and their connectivity in brain tissue demands nanoscale spatial resolution imaging. Super-resolution optical microscopy excels at visualizing specific molecules and individual cells but fails to provide tissue context. Here we developed Comprehensive Analysis of Tissues across Scales (CATS), a technology to densely map brain tissue architecture from millimeter regional to nanometer synaptic scales in diverse chemically fixed brain preparations, including rodent and human. CATS uses fixation-compatible extracellular labeling and optical imaging, including stimulated emission depletion or expansion microscopy, to comprehensively delineate cellular structures. It enables three-dimensional reconstruction of single synapses and mapping of synaptic connectivity by identification and analysis of putative synaptic cleft regions. Applying CATS to the mouse hippocampal mossy fiber circuitry, we reconstructed and quantified the synaptic input and output structure of identified neurons. We furthermore demonstrate applicability to clinically derived human tissue samples, including formalin-fixed paraffin-embedded routine diagnostic specimens, for visualizing the cellular architecture of brain tissue in health and disease.}, author = {Michalska, Julia M and Lyudchik, Julia and Velicky, Philipp and Korinkova, Hana and Watson, Jake and Cenameri, Alban and Sommer, Christoph M and Amberg, Nicole and Venturino, Alessandro and Roessler, Karl and Czech, Thomas and Höftberger, Romana and Siegert, Sandra and Novarino, Gaia and Jonas, Peter M and Danzl, Johann G}, issn = {1546-1696}, journal = {Nature Biotechnology}, publisher = {Springer Nature}, title = {{Imaging brain tissue architecture across millimeter to nanometer scales}}, doi = {10.1038/s41587-023-01911-8}, year = {2023}, } @unpublished{11950, abstract = {Mapping the complex and dense arrangement of cells and their connectivity in brain tissue demands nanoscale spatial resolution imaging. Super-resolution optical microscopy excels at visualizing specific molecules and individual cells but fails to provide tissue context. Here we developed Comprehensive Analysis of Tissues across Scales (CATS), a technology to densely map brain tissue architecture from millimeter regional to nanoscopic synaptic scales in diverse chemically fixed brain preparations, including rodent and human. CATS leverages fixation-compatible extracellular labeling and advanced optical readout, in particular stimulated-emission depletion and expansion microscopy, to comprehensively delineate cellular structures. It enables 3D-reconstructing single synapses and mapping synaptic connectivity by identification and tailored analysis of putative synaptic cleft regions. Applying CATS to the hippocampal mossy fiber circuitry, we demonstrate its power to reveal the system’s molecularly informed ultrastructure across spatial scales and assess local connectivity by reconstructing and quantifying the synaptic input and output structure of identified neurons.}, author = {Michalska, Julia M and Lyudchik, Julia and Velicky, Philipp and Korinkova, Hana and Watson, Jake and Cenameri, Alban and Sommer, Christoph M and Venturino, Alessandro and Roessler, Karl and Czech, Thomas and Siegert, Sandra and Novarino, Gaia and Jonas, Peter M and Danzl, Johann G}, booktitle = {bioRxiv}, publisher = {Cold Spring Harbor Laboratory}, title = {{Uncovering brain tissue architecture across scales with super-resolution light microscopy}}, doi = {10.1101/2022.08.17.504272}, year = {2022}, }