TY - THES AB - Bacteria and their pathogens – phages – are the most abundant living entities on Earth. Throughout their coevolution, bacteria have evolved multiple immune systems to overcome the ubiquitous threat from the phages. Although the molecu- lar details of these immune systems’ functions are relatively well understood, their epidemiological consequences for the phage-bacterial communities have been largely neglected. In this thesis we employed both experimental and theoretical methods to explore whether herd and social immunity may arise in bacterial popu- lations. Using our experimental system consisting of Escherichia coli strains with a CRISPR based immunity to the T7 phage we show that herd immunity arises in phage-bacterial communities and that it is accentuated when the populations are spatially structured. By fitting a mathematical model, we inferred expressions for the herd immunity threshold and the velocity of spread of a phage epidemic in partially resistant bacterial populations, which both depend on the bacterial growth rate, phage burst size and phage latent period. We also investigated the poten- tial for social immunity in Streptococcus thermophilus and its phage 2972 using a bioinformatic analysis of potentially coding short open reading frames with a signalling signature, encoded within the CRISPR associated genes. Subsequently, we tested one identified potentially signalling peptide and found that its addition to a phage-challenged culture increases probability of survival of bacteria two fold, although the results were only marginally significant. Together, these results demonstrate that the ubiquitous arms races between bacteria and phages have further consequences at the level of the population. AU - Payne, Pavel ID - 6291 SN - 2663-337X TI - Bacterial herd and social immunity to phages ER - TY - THES AB - The lac operon is a classic model system for bacterial gene regulation, and has been studied extensively in E. coli, a classic model organism. However, not much is known about E. coli’s ecology and life outside the laboratory, in particular in soil and water environments. The natural diversity of the lac operon outside the laboratory, its role in the ecology of E. coli and the selection pressures it is exposed to, are similarly unknown. In Chapter Two of this thesis, I explore the genetic diversity, phylogenetic history and signatures of selection of the lac operon across 20 natural isolates of E. coli and divergent clades of Escherichia. I found that complete lac operons were present in all isolates examined, which in all but one case were functional. The lac operon phylogeny conformed to the whole-genome phylogeny of the divergent Escherichia clades, which excludes horizontal gene transfer as an explanation for the presence of functional lac operons in these clades. All lac operon genes showed a signature of purifying selection; this signature was strongest for the lacY gene. Lac operon genes of human and environmental isolates showed similar signatures of selection, except the lacZ gene, which showed a stronger signature of selection in environmental isolates. In Chapter Three, I try to identify the natural genetic variation relevant for phenotype and fitness in the lac operon, comparing growth rate on lactose and LacZ activity of the lac operons of these wild isolates in a common genetic background. Sequence variation in the lac promoter region, upstream of the -10 and -35 RNA polymerase binding motif, predicted variation in LacZ activity at full induction, using a thermodynamic model of polymerase binding (Tugrul, 2016). However, neither variation in LacZ activity, nor RNA polymerase binding predicted by the model correlated with variation in growth rate. Lac operons of human and environmental isolates did not differ systematically in either growth rate on lactose or LacZ protein activity, suggesting that these lac operons have been exposed to similar selection pressures. We thus have no evidence that the phenotypic variation we measured is relevant for fitness. To start assessing the effect of genomic background on the growth phenotype conferred by the lac operon, I compared growth on minimal medium with lactose between lac operon constructs and the corresponding original isolates, I found that maximal growth rate was determined by genomic background, with almost all backgrounds conferring higher growth rates than lab strain K12 MG1655. However, I found no evidence that the lactose concentration at which growth was half maximal depended on genomic background. AU - Jesse, Fabienne ID - 820 SN - 2663-337X TI - The lac operon in the wild ER - TY - THES AB - Horizontal gene transfer (HGT), the lateral acquisition of genes across existing species boundaries, is a major evolutionary force shaping microbial genomes that facilitates adaptation to new environments as well as resistance to antimicrobial drugs. As such, understanding the mechanisms and constraints that determine the outcomes of HGT events is crucial to understand the dynamics of HGT and to design better strategies to overcome the challenges that originate from it. Following the insertion and expression of a newly transferred gene, the success of an HGT event will depend on the fitness effect it has on the recipient (host) cell. Therefore, predicting the impact of HGT on the genetic composition of a population critically depends on the distribution of fitness effects (DFE) of horizontally transferred genes. However, to date, we have little knowledge of the DFE of newly transferred genes, and hence little is known about the shape and scale of this distribution. It is particularly important to better understand the selective barriers that determine the fitness effects of newly transferred genes. In spite of substantial bioinformatics efforts to identify horizontally transferred genes and selective barriers, a systematic experimental approach to elucidate the roles of different selective barriers in defining the fate of a transfer event has largely been absent. Similarly, although the fact that environment might alter the fitness effect of a horizontally transferred gene may seem obvious, little attention has been given to it in a systematic experimental manner. In this study, we developed a systematic experimental approach that consists of transferring 44 arbitrarily selected Salmonella typhimurium orthologous genes into an Escherichia coli host, and estimating the fitness effects of these transferred genes at a constant expression level by performing competition assays against the wild type. In chapter 2, we performed one-to-one competition assays between a mutant strain carrying a transferred gene and the wild type strain. By using flow cytometry we estimated selection coefficients for the transferred genes with a precision level of 10-3,and obtained the DFE of horizontally transferred genes. We then investigated if these fitness effects could be predicted by any of the intrinsic properties of the genes, namely, functional category, degree of complexity (protein-protein interactions), GC content, codon usage and length. Our analyses revealed that the functional category and length of the genes act as potential selective barriers. Finally, using the same procedure with the endogenous E. coli orthologs of these 44 genes, we demonstrated that gene dosage is the most prominent selective barrier to HGT. In chapter 3, using the same set of genes we investigated the role of environment on the success of HGT events. Under six different environments with different levels of stress we performed more complex competition assays, where we mixed all 44 mutant strains carrying transferred genes with the wild type strain. To estimate the fitness effects of genes relative to wild type we used next generation sequencing. We found that the DFEs of horizontally transferred genes are highly dependent on the environment, with abundant gene–by-environment interactions. Furthermore, we demonstrated a relationship between average fitness effect of a gene across all environments and its environmental variance, and thus its predictability. Finally, in spite of the fitness effects of genes being highly environment-dependent, we still observed a common shape of DFEs across all tested environments. AU - Acar, Hande ID - 1121 SN - 2663-337X TI - Selective barriers to horizontal gene transfer ER -