@article{239, abstract = {An effective search bound is established for the least non-trivial integer zero of an arbitrary cubic form C ε ℤ[X 1,...,X n], provided that n ≥ 17.}, author = {Timothy Browning and Dietmann, Rainer and Elliott, Peter}, journal = {Mathematische Annalen}, number = {3}, pages = {745 -- 778}, publisher = {Springer}, title = {{Least zero of a cubic form}}, doi = {10.1007/s00208-011-0651-6}, volume = {352}, year = {2011}, } @article{2393, abstract = {We investigate the low energy excitation spectrum of a Bose gas with weak, long range repulsive interactions. In particular, we prove that the Bogoliubov spectrum of elementary excitations with linear dispersion relation for small momentum becomes exact in the mean-field limit.}, author = {Robert Seiringer}, journal = {Communications in Mathematical Physics}, number = {2}, pages = {565 -- 578}, publisher = {Springer}, title = {{The excitation spectrum for weakly interacting Bosons}}, doi = {10.1007/s00220-011-1261-6}, volume = {306}, year = {2011}, } @article{2436, abstract = {Let EMBEDk→d be the following algorithmic problem: Given a finite simplicial complex K of dimension at most k, does there exist a (piecewise linear) embedding of K into Rd? Known results easily imply the polynomiality of EMBEDk→2 (k = 1; 2; the case k = 1, d = 2 is graph planarity) and of EMBEDk→2k for all k ≥ 3. We show that the celebrated result of Novikov on the algorithmic unsolvability of recognizing the 5-sphere implies that EMBEDd→d and EMBED (d-1)→d are undecidable for each d ≥ 5. Our main result is the NP-hardness of EMBED2→4 and, more generally, of EMBED k→d for all k; d with d ≥ 4 and d ≥ k ≥ (2d - 2)/3. These dimensions fall outside the metastable range of a theorem of Haefliger and Weber, which characterizes embeddability using the deleted product obstruction. Our reductions are based on examples, due to Segal, Spież, Freedman, Krushkal, Teichner, and Skopenkov, showing that outside the metastable range the deleted product obstruction is not sufficient to characterize embeddability. }, author = {Matoušek, Jiří and Martin Tancer and Uli Wagner}, journal = {Journal of the European Mathematical Society}, number = {2}, pages = {259 -- 295}, publisher = {European Mathematical Society}, title = {{Hardness of embedding simplicial complexes in Rd}}, doi = {10.4171/JEMS/252}, volume = {13}, year = {2011}, } @inproceedings{2437, abstract = {We introduce a new notion of minors for simplicial complexes (hypergraphs), so-called homological minors. Our motivation is to propose a general approach to attack certain extremal problems for sparse simplicial complexes and the corresponding threshold problems for random complexes. In this paper, we focus on threshold problems. The basic model for random complexes is the Linial-Meshulam model Xk(n, p). By definition, such a complex has n vertices, a complete (k -1)-dimensional skeleton, and every possible k-dimensional simplex is chosen independently with probability p. We show that for every k, t≥ 1, there is a constant C = C(k, t) such that for p≥ C/n, the random complex Xk(n, p) asymptotically almost surely contains K tk (the complete k-dimensional complex on t vertices) as a homological minor. As corollary, the threshold for (topological) embeddability of Xk(n, p) into R2k is at p = θ(1/n). The method can be extended to other models of random complexes (for which the lower skeleta are not necessarily complete) and also to more general Tverberg-type problems, where instead of continuous maps without doubly covered image points (embeddings), we consider maps without qfold covered image points.}, author = {Uli Wagner}, pages = {351 -- 360}, publisher = {ACM}, title = {{Minors in random and expanding hypergraphs}}, doi = {10.1145/1998196.1998256}, year = {2011}, } @article{2454, abstract = {Within a multicellular tissue cells may coordinately form a singular or multiple polar axes, but it is unclear whether a common mechanism governs different types of polar axis formation. The phosphorylation status of PIN proteins, which is directly affected by the PINOID (PID) protein kinase and the PP2A protein phosphatase, is known to regulate the apical-basal polarity of PIN localization in bipolar cells of roots and shoot apices. Here, we provide evidence that the phosphorylation status-mediated PIN polarity switch is widely used to modulate cellular processes in Arabidopsis including multipolar pavement cells (PC) with interdigitated lobes and indentations. The degree of PC interdigitation was greatly reduced either when the FYPP1 gene, which encodes a PP2A called phytochrome-associated serine/threonine protein phosphatase, was knocked out or when the PID gene was overexpressed (35S:PID). These genetic modifications caused PIN1 localization to switch from lobe to indentation regions. The PP2A and PID mediated switching of PIN1 localization is strikingly similar to their regulation of the apical-basal polarity switch of PIN proteins in other cells. Our findings suggest a common mechanism for the regulation of PIN1 polarity formation, a fundamental cellular process that is crucial for pattern formation both at the tissue/organ and cellular levels.}, author = {Hongjiang Li and Lin, Deshu and Dhonukshe, Pankaj B and Nagawa, Shingo and Chen, Dandan and Jirí Friml and Scheres, Ben and Guo, Hongwei and Yang, Zhenbiao}, journal = {Cell Research}, number = {6}, pages = {970 -- 978}, publisher = {Nature Publishing Group}, title = {{Phosphorylation switch modulates the interdigitated pattern of PIN1 localization and cell expansion in Arabidopsis leaf epidermis}}, doi = {10.1038/cr.2011.49}, volume = {21}, year = {2011}, } @article{2460, abstract = {In unicellular and multicellular organisms, cell polarity is essential for a wide range of biological processes. An important feature of cell polarity is the asymmetric distribution of proteins in or at the plasma membrane. In plants such polar localized proteins play various specific roles ranging from organizing cell morphogenesis, asymmetric cell division, pathogen defense, nutrient transport and establishment of hormone gradients for developmental patterning. Moreover, flexible respecification of cell polarities enables plants to adjust their physiology and development to environmental changes. Having evolved multicellularity independently and lacking major cell polarity mechanisms of animal cells, plants came up with alternative solutions to generate and respecify cell polarity as well as to regulate polar domains at the plasma membrane.}, author = {Dettmer, Jan and Friml, Jirí}, journal = {Current Opinion in Cell Biology}, number = {6}, pages = {686 -- 696}, publisher = {Elsevier}, title = {{Cell polarity in plants: When two do the same, it is not the same...}}, doi = {10.1016/j.ceb.2011.09.006}, volume = {23}, year = {2011}, } @article{2511, abstract = {Parkinson's disease is a common neurodegenerative disorder characterized by a profound motor disability that is traceable to the emergence of synchronous, rhythmic spiking in neurons of the external segment of the globus pallidus (GPe). The origins of this pathophysiology are poorly defined for the generation of pacemaking. After the induction of a parkinsonian state in mice, there was a progressive decline in autonomous GPe pacemaking, which normally serves to desynchronize activity. The loss was attributable to the downregulation of an ion channel that is essential in pacemaking, the hyperpolarization and cyclic nucleotide-gated (HCN) channel. Viral delivery of HCN2 subunits restored pacemaking and reduced burst spiking in GPe neurons. However, the motor disability induced by dopamine (DA) depletion was not reversed, suggesting that the loss of pacemaking was a consequence, rather than a cause, of key network pathophysiology, a conclusion that is consistent with the ability of L-type channel antagonists to attenuate silencing after DA depletion.}, author = {Chan, Savio and Glajch, Kelly E and Gertler, Tracy S and Guzmán, Jaime N and Mercer, Jeff N and Lewis, Alan S and Goldberg, Alan B and Tkatch, Tatiana and Ryuichi Shigemoto and Fleming, Sheila M and Chetkovich, Dane M and Osten, Pavel and Kita, Hitoshi and Surmeier, James D}, journal = {Nature Neuroscience}, number = {1}, pages = {85 -- 94}, publisher = {Nature Publishing Group}, title = {{HCN channelopathy in external globus pallidus neurons in models of Parkinson s disease}}, doi = {10.1038/nn.2692}, volume = {14}, year = {2011}, } @article{2512, abstract = {GABAergic inhibition plays a central role in the control of pyramidal cell ensemble activities; thus, any signaling mechanism that regulates inhibition is able to fine-tune network patterns. Here, we provide evidence that the retrograde nitric oxide (NO)- cGMP cascade triggered by NMDA receptor (NMDAR) activation plays a role in the control of hippocampal GABAergic transmission in mice. GABAergic synapses express neuronal nitric oxide synthase (nNOS) postsynaptically and NO receptors (NO-sensitive guanylyl cyclase) in the presynaptic terminals. We hypothesized that-similar to glutamatergic synapses-the Ca 2+ transients required to activate nNOS were provided by NMDA receptor activation. Indeed, administration of 5 μm NMDA induced a robust nNOS-dependent cGMP production in GABAergic terminals, selectively in the CA1 and CA3c areas. Furthermore, using preembedding, postembedding, and SDS-digested freeze-fracture replica immunogold labeling, we provided quantitative immunocytochemical evidence that NMDAR subunits GluN1, GluN2A, and GluN2B were present in most somatic GABAergic synapses postsynaptically. These data indicate that NMDARs can modulate hippocampal GABAergic inhibition via NO- cGMP signaling in an activity-dependent manner and that this effect is subregion specific in the mouse hippocampus.}, author = {Szabadits, Eszter and Cserép, Csaba and Szonyi, András and Fukazawa, Yugo and Ryuichi Shigemoto and Watanabe, Masahiko and Itohara, Shigeyoshi and Freund, Tamás F and Nyíri, Gábor}, journal = {Journal of Neuroscience}, number = {16}, pages = {5893 -- 5904}, publisher = {Society for Neuroscience}, title = {{NMDA receptors in hippocampal GABAergic synapses and their role in nitric oxide signaling}}, doi = {10.1523/JNEUROSCI.5938-10.2011}, volume = {31}, year = {2011}, } @article{2513, abstract = {SK2-containing channels are expressed in the postsynaptic density (PSD) of dendritic spines on mouse hippocampal area CA1 pyramidal neurons and influence synaptic responses, plasticity and learning. The Sk2 gene (also known as Kcnn2) encodes two isoforms that differ only in the length of their N-terminal domains. SK2-long (SK2-L) and SK2-short (SK2-S) are coexpressed in CA1 pyramidal neurons and likely form heteromeric channels. In mice lacking SK2-L (SK2-S only mice), SK2-S-containing channels were expressed in the extrasynaptic membrane, but were excluded from the PSD. The SK channel contribution to excitatory postsynaptic potentials was absent in SK2-S only mice and was restored by SK2-L re-expression. Blocking SK channels increased the amount of long-term potentiation induced in area CA1 in slices from wild-type mice but had no effect in slices from SK2-S only mice. Furthermore, SK2-S only mice outperformed wild-type mice in the novel object recognition task. These results indicate that SK2-L directs synaptic SK2-containing channel expression and is important for normal synaptic signaling, plasticity and learning. }, author = {Allen, Duane H and Bond, Chris T and Luján, Rafael and Ballesteros-Merino, Carmen and Lin, Michael T and Wang, Kang and Klett, Nathan and Watanabe, Masahiko and Ryuichi Shigemoto and Stackman, Robert W and Maylie, James G and Adelman, John P}, journal = {Nature Neuroscience}, number = {6}, pages = {744 -- 749}, publisher = {Nature Publishing Group}, title = {{The SK2-long isoform directs synaptic localization and function of SK2-containing channels}}, doi = {10.1038/nn.2832}, volume = {14}, year = {2011}, } @article{2717, abstract = {We consider Hermitian and symmetric random band matrices H in d ≥ 1 dimensions. The matrix elements H xy, indexed by, are independent, uniformly distributed random variables if {pipe}x-y{pipe} is less than the band width W, and zero otherwise. We prove that the time evolution of a quantum particle subject to the Hamiltonian H is diffusive on time scales. We also show that the localization length of the eigenvectors of H is larger than a factor W d/6 times the band width. All results are uniform in the size of the matrix. }, author = {László Erdös and Knowles, Antti}, journal = {Communications in Mathematical Physics}, number = {2}, pages = {509 -- 554}, publisher = {Springer}, title = {{Quantum diffusion and eigenfunction delocalization in a random band matrix model}}, doi = {10.1007/s00220-011-1204-2}, volume = {303}, year = {2011}, } @misc{2765, abstract = {This is a study of the universality of spectral statistics for large random matrices. Considered are N×N symmetric, Hermitian, or quaternion self-dual random matrices with independent identically distributed entries (Wigner matrices), where the probability distribution of each matrix element is given by a measure v with zero expectation and with subexponential decay. The main result is that the correlation functions of the local eigenvalue statistics in the bulk of the spectrum coincide with those of the Gaussian Orthogonal Ensemble (GOE), the Gaussian Unitary Ensemble (GUE), and the Gaussian Symplectic Ensemble (GSE), respectively, in the limit as N → ∞. This approach is based on a study of the Dyson Brownian motion via a related new dynamics, the local relaxation flow. As a main input, it is established that the density of the eigenvalues converges to the Wigner semicircle law, and this holds even down to the smallest possible scale. Moreover, it is shown that the eigenvectors are completely delocalized. These results hold even without the condition that the matrix elements are identically distributed: only independence is used. In fact, for the matrix elements of the Green function strong estimates are given that imply that the local statistics of any two ensembles in the bulk are identical if the first four moments of the matrix elements match. Universality at the spectral edges requires matching only two moments. A Wigner-type estimate is also proved, and it is shown that the eigenvalues repel each other on arbitrarily small scales.}, author = {László Erdös}, booktitle = {Russian Mathematical Surveys}, number = {3}, pages = {507 -- 626}, publisher = {IOP Publishing Ltd.}, title = {{Universality of Wigner random matrices: A survey of recent results}}, doi = {10.1070/RM2011v066n03ABEH004749}, volume = {66}, year = {2011}, } @article{2766, abstract = {We consider Hermitian and symmetric random band matrices H in d ≥ dimensions. The matrix elements Hxy, indexed by x,y ∈ Λ ⊂ ℤd are independent and their variances satisfy σ2xy:= E{pipe}Hxy{pipe}2 = W-d f((x-y)/W for some probability density f. We assume that the law of each matrix element Hxy is symmetric and exhibits subexponential decay. We prove that the time evolution of a quantum particle subject to the Hamiltonian H is diffusive on time scales ≪ Wd/3. We also show that the localization length of the eigenvectors of H is larger than a factor Wd/6 times the band width W. All results are uniform in the size {pipe}Λ{pipe} of the matrix. This extends our recent result (Erdo{double acute}s and Knowles in Commun. Math. Phys., 2011) to general band matrices. As another consequence of our proof we show that, for a larger class of random matrices satisfying Σx σ2xy for all y, the largest eigenvalue of H is bounded with high probability by 2+M-2/3+e{open} for any e{open} > 0, where M:= 1/(maxx,y σ2xy).}, author = {László Erdös and Knowles, Antti}, journal = {Annales Henri Poincare}, number = {7}, pages = {1227 -- 1319}, publisher = {Birkhäuser}, title = {{Quantum diffusion and delocalization for band matrices with general distribution}}, doi = {10.1007/s00023-011-0104-5}, volume = {12}, year = {2011}, } @article{2764, abstract = {Consider the Dyson Brownian motion with parameter β, where β=1,2,4 corresponds to the eigenvalue flows for the eigenvalues of symmetric, hermitian and quaternion self-dual ensembles. For any β≥1, we prove that the relaxation time to local equilibrium for the Dyson Brownian motion is bounded above by N -ζ for some ζ> 0. The proof is based on an estimate of the entropy flow of the Dyson Brownian motion w. r. t. a "pseudo equilibrium measure". As an application of this estimate, we prove that the eigenvalue spacing statistics in the bulk of the spectrum for N×N symmetric Wigner ensemble is the same as that of the Gaussian Orthogonal Ensemble (GOE) in the limit N→∞. The assumptions on the probability distribution of the matrix elements of the Wigner ensemble are a subexponential decay and some minor restriction on the support.}, author = {László Erdös and Schlein, Benjamin and Yau, Horng-Tzer}, journal = {Inventiones Mathematicae}, number = {1}, pages = {75 -- 119}, publisher = {Springer}, title = {{Universality of random matrices and local relaxation flow}}, doi = {10.1007/s00222-010-0302-7}, volume = {185}, year = {2011}, } @article{2799, abstract = {Shear flows undergo a sudden transition from laminar to turbulent motion as the velocity increases, and the onset of turbulence radically changes transport efficiency and mixing properties. Even for the well-studied case of pipe flow, it has not been possible to determine at what Reynolds number the motion will be either persistently turbulent or ultimately laminar. We show that in pipes, turbulence that is transient at low Reynolds numbers becomes sustained at a distinct critical point. Through extensive experiments and computer simulations, we were able to identify and characterize the processes ultimately responsible for sustaining turbulence. In contrast to the classical Landau-Ruelle-Takens view that turbulence arises from an increase in the temporal complexity of fluid motion, here, spatial proliferation of chaotic domains is the decisive process and intrinsic to the nature of fluid turbulence.}, author = {Avila, Kerstin and Moxey, David and de Lózar, Alberto and Avila, Marc and Barkley, Dwight and Björn Hof}, journal = {Science}, number = {6039}, pages = {192 -- 196}, publisher = {American Association for the Advancement of Science}, title = {{The onset of turbulence in pipe flow}}, doi = {10.1126/science.1203223}, volume = {333}, year = {2011}, } @article{2800, abstract = {In shear flows, turbulence first occurs in the form of localized structures (puffs/spots) surrounded by laminar fluid. We here investigate such spatially intermittent flows in a pipe experiment showing that turbulent puffs have a well-defined interaction distance, which sets their minimum spacing as well as the maximum observable turbulent fraction. Two methodologies are employed. Starting from a laminar flow, puffs are first created by locally injecting a jet of fluid through the pipe wall. When the perturbation is applied periodically at low frequencies, as expected, a regular sequence of puffs is observed where the puff spacing is given by the ratio of the mean flow speed to the perturbation frequency. At large frequencies however puffs are found to interact and annihilate each other. Varying the perturbation frequency, an interaction distance is determined which sets the highest possible turbulence fraction. This enables us to establish an upper bound for the friction factor in the transitional regime, which provides a well-defined link between the Blasius and the Hagen-Poiseuille friction laws. In the second set of experiments, the Reynolds number is reduced suddenly from fully turbulent to the intermittent regime. The resulting flow reorganizes itself to a sequence of constant size puffs which, unlike in Couette and Taylor–Couette flow are randomly spaced. The minimum distance between the turbulent patches is identical to the puff interaction length. The puff interaction length is found to be in agreement with the wavelength of regular stripe and spiral patterns in plane Couette and Taylor–Couette flow.}, author = {Samanta, Devranjan and de Lózar, Alberto and Björn Hof}, journal = {Journal of Fluid Mechanics}, pages = {193 -- 204}, publisher = {Cambridge University Press}, title = {{Experimental investigation of laminar turbulent intermittency in pipe flow}}, doi = {10.1017/jfm.2011.189}, volume = {681}, year = {2011}, } @inproceedings{2801, abstract = {Turbulent puffs in pipe flow are characterized by a sharp laminar-turbulent interface at the trailing edge and a more diffused leading interface. It is known that these laminar-turbulent interfaces propagate at a speed that is approximately equal to the flow rate. Our results from direct numerical simulation show that, locally, the interface velocity relative to the fluid (i) counteracts the advection due to the laminar velocity profile so that the puff can preserve its characteristic overall shape, (ii) is very small in magnitude, but involves a large interface area so that the global propagation velocity relative to the mean flow can be large and (iii) is determined by both inertial and viscous effects. The analysis provides some new insights into the mechanisms that sustain or expand localized turbulence and might be relevant for the design of new control strategies.}, author = {Holzner, Markus and Avila, Marc and de Lózar, Alberto and Björn Hof}, number = {5}, publisher = {IOP Publishing Ltd.}, title = {{A Lagrangian approach to the interface velocity of turbulent puffs in pipe flow}}, doi = {10.1088/1742-6596/318/5/052031}, volume = {318}, year = {2011}, } @article{2874, abstract = {The apical hook develops in the upper part of the hypocotyl when seeds buried in the soil germinate, and serves to protect cotyledons and the shoot apical meristem from possible damage caused by pushing through the soil. The curvature is formed through differential cell growth that occurs at the two opposite sides of the hypocotyl, and it is established by a gradient of auxin activity and refined by the coordinated action of auxin and ethylene. Here we show that gibberellins (GAs) promote hook development through the transcriptional regulation of several genes of the ethylene and auxin pathways in Arabidopsis. The level of GA activity determines the speed of hook formation and the extent of the curvature during the formation phase independently of ethylene, probably by modulating auxin transport and response through HLS1, PIN3, and PIN7. Moreover, GAs cooperate with ethylene in preventing hook opening, in part through the induction of ethylene production mediated by ACS5/ETO2 and ACS8.}, author = {Gallego-Bartolomé, Javier and Arana, María V and Vandenbussche, Filip and Žádníková, Petra and Minguet, Eugenio G and Guardiola, Vicente and Van Der Straeten, Dominique and Eva Benková and Alabadí, David and Blázquez, Miguel A}, journal = {Plant Journal}, number = {4}, pages = {622 -- 634}, publisher = {Wiley-Blackwell}, title = {{Hierarchy of hormone action controlling apical hook development in Arabidopsis}}, doi = {10.1111/j.1365-313X.2011.04621.x}, volume = {67}, year = {2011}, } @article{2871, abstract = {Despite their relatively simple appearance, roots are incredibly complex organs that are highly adapted to differing environments. Many aspects of root development are co-ordinated by subtle spatial differences in the concentrations of the phytohormones auxin and cytokinin. Events from the formation of a root during embryogenesis to the determination of the network of lateral roots are controlled by interactions between these hormones. Recently, interactions have been defined where auxin signaling promotes the expression of cytokinin signaling inhibitors, cytokinin signaling promotes the expression of auxin signaling inhibitors and finally where cytokinin signaling regulates the complex network of auxin transport proteins to position zones of high auxin signaling. We are witnessing a period of discovery in which we are beginning to understand how these hormonal pathways communicate to regulate root formation.}, author = {Bishopp, Anthony and Eva Benková and Helariutta, Ykä}, journal = {Current Opinion in Plant Biology}, number = {1}, pages = {10 -- 16}, publisher = {Elsevier}, title = {{Sending mixed messages: Auxin-cytokinin crosstalk in roots}}, doi = {10.1016/j.pbi.2010.08.014}, volume = {14}, year = {2011}, } @article{2898, abstract = {Sex allocation theory has been remarkably successful at explaining the prevalence of even sex ratios in natural populations and at identifying specific conditions that can result in biased sex ratios. Much of this theory focuses on parental sex determination (SD) strategies. Here, we consider instead the evolutionary causes and consequences of mixed offspring SD strategies, in which the genotype of an individual determines not its sex, but the probability of developing one of multiple sexes. We find that alleles specifying mixed offspring SD strategies can generally outcompete alleles that specify pure strategies, but generate constraints that may prevent a population from reaching an even sex ratio. We use our model to analyze sex ratios in natural populations of Tetrahymena thermophila, a ciliate with seven sexes determined by mixed SD alleles. We show that probabilistic SD is sufficient to account for the occurrence of skewed sex ratios in natural populations of T. thermophila, provided that their effective population sizes are small. Our results highlight the importance of genetic drift in sex ratio evolution and suggest that mixed offspring SD strategies should be more common than currently thought.}, author = {Tiago Paixao and Phadke, Sujal S and Azevedo, Ricardo B and Zufall, Rebecca A}, journal = {Evolution; International Journal of Organic Evolution}, number = {7}, pages = {2050 -- 2060}, publisher = {Wiley-Blackwell}, title = {{Sex ratio evolution under probabilistic sex determination}}, doi = {10.1111/j.1558-5646.2011.01266.x}, volume = {65}, year = {2011}, } @article{2897, author = {Tiago Paixao and Azevedo, Ricardo B}, journal = {PLoS Computational Biology}, number = {7}, publisher = {Public Library of Science}, title = {{Redundancy and the Evolution of Cis Regulatory Element Multiplicity}}, doi = {10.1371/journal.pcbi.1000848}, volume = {6}, year = {2011}, } @inbook{2922, author = {Vicente, Sara and Vladimir Kolmogorov and Rother, Carsten}, booktitle = {Markov Random Fields for Vision and Image Processing}, editor = {Blake, Andrew and Kohli, Pushmeet and Rother, Carsten}, publisher = {Massachusetts Institute of Technology Press}, title = {{Graph-cut Based Image Segmentation with Connectivity Priors}}, year = {2011}, } @inbook{2923, author = {Kumar, M Pawan and Vladimir Kolmogorov and Torr, Philip H}, booktitle = {Markov Random Fields for Vision and Image Processing}, editor = {Blake, Andrew and Kohli, Pushmeet and Rother, Carsten}, publisher = {Massachusetts Institute of Technology Press}, title = {{Analyzing Convex Relaxations for MAP Estimation}}, year = {2011}, } @inbook{2924, author = {Criminisi, Antonio and Cross, Geoffrey and Blake, Andrew and Vladimir Kolmogorov}, booktitle = {Markov Random Fields for Vision and Image Processing}, editor = {Blake, Andrew and Kohli, Pushmeet and Rother, Carsten}, publisher = {Massachusetts Institute of Technology Press}, title = {{Bilayer Segmentation of Video}}, year = {2011}, } @inbook{2925, author = {Rother, Carsten and Vladimir Kolmogorov and Boykov, Yuri and Blake, Andrew}, booktitle = {Markov Random Fields for Vision and Image Processing}, editor = {Blake, Andrew and Kohli, Pushmeet and Rother, Carsten}, publisher = {Massachusetts Institute of Technology Press}, title = {{Interactive Foreground Extraction using graph cut}}, year = {2011}, } @inbook{2935, author = {Boykov, Yuri and Vladimir Kolmogorov}, booktitle = {Markov Random Fields for Vision and Image Processing}, editor = {Blake, Andrew and Kohli, Pushmeet and Rother, Carsten}, pages = {31 -- 50}, publisher = {Massachusetts Institute of Technology Press}, title = {{Basic graph cut algorithms}}, year = {2011}, } @article{2961, abstract = {Rapid research progress in genotyping techniques have allowed large genome-wide association studies. Existing methods often focus on determining associations between single loci and a specic phenotype. However, a particular phenotype is usually the result of complex relationships between multiple loci and the environment. In this paper, we describe a two-stage method for detecting epistasis by combining the traditionally used single-locus search with a search for multiway interactions. Our method is based on an extended version of Fisher's exact test. To perform this test, a Markov chain is constructed on the space of multidimensional contingency tables using the elements of a Markov basis as moves. We test our method on simulated data and compare it to a two-stage logistic regression method and to a fully Bayesian method, showing that we are able to detect the interacting loci when other methods fail to do so. Finally, we apply our method to a genome-wide data set consisting of 685 dogs and identify epistasis associated with canine hair length for four pairs of single nucleotide polymorphisms (SNPs).}, author = {Malaspinas, Anna-Sapfo and Caroline Uhler}, journal = {Journal of Algebraic Statistics}, number = {1}, pages = {36 -- 53}, publisher = {Public Knowledge Project}, title = {{Detecting epistasis via Markov bases}}, doi = {http://dx.doi.org/10.18409/jas.v2i1.27}, volume = {2}, year = {2011}, } @inproceedings{2960, abstract = {Traditional statistical methods for the confidentiality protection for statistical databases do not scale well to deal with GWAS (genome-wide association studies) databases and external information on them. The more recent concept of differential privacy, introduced by the cryptographic community, is an approach which provides a rigorous definition of privacy with meaningful privacy guarantees in the presence of arbitrary external information. Building on such notions, we propose new methods to release aggregate GWAS data without compromising an individual's privacy. We present methods for releasing differentially private minor allele frequencies, chi-square statistics and p-values. We compare these approaches on simulated data and on a GWAS study of canine hair length involving 685 dogs. We also propose a privacy-preserving method for finding genome-wide associations based on a differentially private approach to penalized logistic regression.}, author = {Fienberg, Stephen E and Slavkovic, Aleksandra and Caroline Uhler}, publisher = {IEEE}, title = {{Privacy Preserving GWAS Data Sharing}}, doi = {10.1109/ICDMW.2011.140}, year = {2011}, } @inproceedings{2975, abstract = {Zero-knowledge proofs of knowledge (ZK-PoK) for discrete logarithms and related problems are indispensable for practical cryptographic protocols. Recently, Camenisch, Kiayias, and Yung provided a specification language (the CKY-language) for such protocols which allows for a modular design and protocol analysis: for every zero-knowledge proof specified in this language, protocol designers are ensured that there exists an efficient protocol which indeed proves the specified statement. However, the protocols resulting from their compilation techniques only satisfy the classical notion of ZK-PoK, which is not retained are when they used as building blocks for higher-level applications or composed with other protocols. This problem can be tackled by moving to the Universal Composability (UC) framework, which guarantees retention of security when composing protocols in arbitrary ways. While there exist generic transformations from $\Sigma$-protocols to UC-secure protocols, these transformation are often too inefficient for practice. In this paper we introduce a specification language akin to the CKY-language and a compiler such that the resulting protocols are UC-secure and efficient. To this end, we propose an extension of the UC-framework addressing the issue that UC-secure zero-knowledge proofs are by definition proofs of knowledge, and state a special composition theorem which allows one to use the weaker -- but more efficient and often sufficient -- notion of proofs of membership in the UC-framework. We believe that our contributions enable the design of practically efficient protocols that are UC-secure and thus themselves can be used as building blocks.}, author = {Camenisch, Jan and Stephan Krenn and Shoup, Victor}, editor = {Lee, Dong Hoon and Wang, Xiaoyun}, pages = {449 -- 467}, publisher = {Springer}, title = {{A Framework for Practical Universally Composable Zero-Knowledge Protocols}}, doi = {10.1007/978-3-642-25385-0}, volume = {7073}, year = {2011}, } @inproceedings{2977, abstract = {Cryptographic two-party protocols are used ubiquitously in everyday life. While some of these protocols are easy to understand and implement (e.g., key exchange or transmission of encrypted data), many of them are much more complex (e.g., e-banking and e-voting applications, or anonymous authentication and credential systems). For a software engineer without appropriate cryptographic skills the implementation of such protocols is often difficult, time consuming and error-prone. For this reason, a number of compilers supporting programmers have been published in recent years. However, they are either designed for very specific cryptographic primitives (e.g., zero-knowledge proofs of knowledge), or they only offer a very low level of abstraction and thus again demand substantial mathematical and cryptographic skills from the programmer. Finally, some of the existing compilers do not produce executable code, but only metacode which has to be instantiated with mathematical libraries, encryption routines, etc. before it can actually be used. In this paper we present a cryptographically aware compiler which is equally useful to cryptographers who want to benchmark protocols designed on paper, and to programmers who want to implement complex security sensitive protocols without having to understand all subtleties. Our tool offers a high level of abstraction and outputs well-structured and documented Java code. We believe that our compiler can contribute to shortening the development cycles of cryptographic applications and to reducing their error-proneness.}, author = {Bangerter, Endre and Stephan Krenn and Seifriz, Martial and Ultes-Nitsche, Ulrich}, editor = {Venter, Hein S. and Coetzee, Marijke and Loock, Marianne}, publisher = {IEEE}, title = {{cPLC - A Cryptographic Programming Language and Compiler}}, doi = {10.1109/ISSA.2011.6027533}, year = {2011}, } @inproceedings{2976, abstract = {Side channel attacks on cryptographic systems exploit information gained from physical implementations rather than theoretical weaknesses of a scheme. In recent years, major achievements were made for the class of so called access-driven cache attacks. Such attacks exploit the leakage of the memory locations accessed by a victim process. In this paper we consider the AES block cipher and present an attack which is capable of recovering the full secret key in almost realtime for AES-128, requiring only a very limited number of observed encryptions. Unlike previous attacks, we do not require any information about the plaintext (such as its distribution, etc.). Moreover, for the first time, we also show how the plaintext can be recovered without having access to the ciphertext at all. It is the first working attack on AES implementations using compressed tables. There, no efficient techniques to identify the beginning of AES rounds is known, which is the fundamental assumption underlying previous attacks. We have a fully working implementation of our attack which is able to recover AES keys after observing as little as 100 encryptions. It works against the OpenSSL 0.9.8n implementation of AES on Linux systems. Our spy process does not require any special privileges beyond those of a standard Linux user. A contribution of probably independent interest is a denial of service attack on the task scheduler of current Linux systems (CFS), which allows one to observe (on average) every single memory access of a victim process.}, author = {Gullasch, David and Bangerter, Endre and Stephan Krenn}, pages = {490 -- 505}, publisher = {IEEE}, title = {{Cache Games - Bringing Access-Based Cache Attacks on AES to Practice}}, doi = {10.1109/SP.2011.22}, year = {2011}, } @article{3092, abstract = {The phytohormone auxin is vital to plant growth and development. A unique property of auxin among all other plant hormones is its cell-to-cell polar transport that requires activity of polarly localized PIN-FORMED (PIN) auxin efflux transporters. Despite the substantial molecular insight into the cellular PIN polarization, the mechanistic understanding for developmentally and environmentally regulated PIN polarization is scarce. The long-standing belief that auxin modulates its own transport by means of a positive feedback mechanism has inspired both experimentalists and theoreticians for more than two decades. Recently, theoretical models for auxin-dependent patterning in plants include the feedback between auxin transport and the PIN protein localization. These computer models aid to assess the complexity of plant development by testing and predicting plausible scenarios for various developmental processes that occur in planta. Although the majority of these models rely on purely heuristic principles, the most recent mechanistic models tentatively integrate biologically testable components into known cellular processes that underlie the PIN polarity regulation. The existing and emerging computational approaches to describe PIN polarization are presented and discussed in the light of recent experimental data on the PIN polar targeting.}, author = {Wabnik, Krzysztof T and Govaerts, Willy and Friml, Jirí and Kleine Vehn, Jürgen}, journal = {Molecular BioSystems}, number = {8}, pages = {2352 -- 2359}, publisher = {Royal Society of Chemistry}, title = {{Feedback models for polarized auxin transport: An emerging trend}}, doi = {10.1039/c1mb05109a}, volume = {7}, year = {2011}, } @article{3089, abstract = {The phytohormone auxin is an important determinant of plant development. Directional auxin flow within tissues depends on polar localization of PIN auxin transporters. To explore regulation of PIN-mediated auxin transport, we screened for suppressors of PIN1 overexpression (supo) and identified an inositol polyphosphate 1-phosphatase mutant (supo1), with elevated inositol trisphosphate (InsP 3) and cytosolic Ca 2+ levels. Pharmacological and genetic increases in InsP 3 or Ca 2+ levels also suppressed the PIN1 gain-of-function phenotypes and caused defects in basal PIN localization, auxin transport and auxin-mediated development. In contrast, the reductions in InsP 3 levels and Ca 2+ signaling antagonized the effects of the supo1 mutation and disrupted preferentially apical PIN localization. InsP 3 and Ca 2+ are evolutionarily conserved second messengers involved in various cellular functions, particularly stress responses. Our findings implicate them as modifiers of cell polarity and polar auxin transport, and highlight a potential integration point through which Ca 2+ signaling-related stimuli could influence auxin-mediated development.}, author = {Zhang, Jing and Vanneste, Steffen and Brewer, Philip B and Michniewicz, Marta and Peter Grones and Kleine-Vehn, Jürgen and Löfke, Christian and Teichmann, Thomas and Bielach, Agnieszka and Cannoot, Bernard and Hoyerová, Klára and Xu Chen and Xue, Hong-Wei and Eva Benková and Zažímalová, Eva and Jirí Friml}, journal = {Developmental Cell}, number = {6}, pages = {855 -- 866}, publisher = {Cell Press}, title = {{Inositol trisphosphate-induced ca^2+ signaling modulates auxin transport and pin polarity}}, doi = {10.1016/j.devcel.2011.05.013}, volume = {20}, year = {2011}, } @article{3090, abstract = {The polarized transport of the phytohormone auxin [1], which is crucial for the regulation of different stages of plant development [2, 3], depends on the asymmetric plasma membrane distribution of the PIN-FORMED (PIN) auxin efflux carriers [4, 5]. The PIN polar localization results from clathrin-mediated endocytosis (CME) from the plasma membrane and subsequent polar recycling [6]. The Arabidopsis genome encodes two groups of dynamin-related proteins (DRPs) that show homology to mammalian dynamin - a protein required for fission of endocytic vesicles during CME [7, 8]. Here we show by coimmunoprecipitation (coIP), bimolecular fluorescence complementation (BiFC), and Förster resonance energy transfer (FRET) that members of the DRP1 group closely associate with PIN proteins at the cell plate. Localization and phenotypic analysis of novel drp1 mutants revealed a requirement for DRP1 function in correct PIN distribution and in auxin-mediated development. We propose that rapid and specific internalization of PIN proteins mediated by the DRP1 proteins and the associated CME machinery from the cell plate membranes during cytokinesis is an important mechanism for proper polar PIN positioning in interphase cells.}, author = {Mravec, Jozef and Petrášek, Jan and Li, Na and Boeren, Sjef and Karlova, Rumyana and Kitakura, Saeko and Pařezová, Markéta and Naramoto, Satoshi and Nodzyński, Thomasz and Dhonukshe, Pankaj and Bednarek, Sebastian Y and Zažímalová, Eva and De Vries, Sacco and Jirí Friml}, journal = {Current Biology}, number = {12}, pages = {1055 -- 1060}, publisher = {Cell Press}, title = {{Cell plate restricted association of DRP1A and PIN proteins is required for cell polarity establishment in arabidopsis}}, doi = {10.1016/j.cub.2011.05.018}, volume = {21}, year = {2011}, } @article{3088, abstract = {Background: Whereas the majority of animals develop toward a predetermined body plan, plants show iterative growth and continually produce new organs and structures from actively dividing meristems. This raises an intriguing question: How are these newly developed organs patterned? In Arabidopsis embryos, radial symmetry is broken by the bisymmetric specification of the cotyledons in the apical domain. Subsequently, this bisymmetry is propagated to the root promeristem. Results: Here we present a mutually inhibitory feedback loop between auxin and cytokinin that sets distinct boundaries of hormonal output. Cytokinins promote the bisymmetric distribution of the PIN-FORMED (PIN) auxin efflux proteins, which channel auxin toward a central domain. High auxin promotes transcription of the cytokinin signaling inhibitor AHP6, which closes the interaction loop. This bisymmetric auxin response domain specifies the differentiation of protoxylem in a bisymmetric pattern. In embryonic roots, cytokinin is required to translate a bisymmetric auxin response in the cotyledons to a bisymmetric vascular pattern in the root promeristem. Conclusions: Our results present an interactive feedback loop between hormonal signaling and transport by which small biases in hormonal input are propagated into distinct signaling domains to specify the vascular pattern in the root meristem. It is an intriguing possibility that such a mechanism could transform radial patterns and allow continuous vascular connections between other newly emerging organs.}, author = {Bishopp, Anthony and Help, Hanna and El-Showk, Sedeer and Weijers, Dolf and Scheres, Ben and Jirí Friml and Eva Benková and Mähönen, Ari Pekka and Helariutta, Ykä}, journal = {Current Biology}, number = {11}, pages = {917 -- 926}, publisher = {Cell Press}, title = {{A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots}}, doi = {10.1016/j.cub.2011.04.017}, volume = {21}, year = {2011}, } @article{3093, abstract = { Plants take up iron from the soil using the IRON-REGULATED TRANSPORTER 1 (IRT1) high-affinity iron transporter at the root surface. Sophisticated regulatory mechanisms allow plants to tightly control the levels of IRT1, ensuring optimal absorption of essential but toxic iron. Here, we demonstrate that overexpression of Arabidopsis thaliana IRT1 leads to constitutive IRT1 protein accumulation, metal overload, and oxidative stress. IRT1 is unexpectedly found in trans-Golgi network/early endosomes of root hair cells, and its levels and localization are unaffected by iron nutrition. Using pharmacological approaches, we show that IRT1 cycles to the plasma membrane to perform iron and metal uptake at the cell surface and is sent to the vacuole for proper turnover. We also prove that IRT1 is monoubiquitinated on several cytosol-exposed residues in vivo and that mutation of two putative monoubiquitination target residues in IRT1 triggers stabilization at the plasma membrane and leads to extreme lethality. Together, these data suggest a model in which monoubiquitin-dependent internalization/sorting and turnover keep the plasma membrane pool of IRT1 low to ensure proper iron uptake and to prevent metal toxicity. More generally, our work demonstrates the existence of monoubiquitin-dependent trafficking to lytic vacuoles in plants and points to proteasome-independent turnover of plasma membrane proteins.}, author = {Barberon, Marie and Zelazny, Enric and Robert, Stéphanie and Conéjéro, Geneviève and Curie, Cathy and Jirí Friml and Vert, Grégory}, journal = {PNAS}, number = {32}, pages = {E450 -- E458}, publisher = {National Academy of Sciences}, title = {{Monoubiquitin dependent endocytosis of the Iron Regulated Transporter 1 IRT1 transporter controls iron uptake in plants}}, doi = {10.1073/pnas.1100659108}, volume = {108}, year = {2011}, } @article{3094, abstract = {Summary Gravitropism aligns plant growth with gravity. It involves gravity perception and the asymmetric distribution of the phytohormone auxin. Here we provide insights into the mechanism for hypocotyl gravitropic growth. We show that the Arabidopsis thaliana PIN3 auxin transporter is required for the asymmetric auxin distribution for the gravitropic response. Gravistimulation polarizes PIN3 to the bottom side of hypocotyl endodermal cells, which correlates with an increased auxin response at the lower hypocotyl side. Both PIN3 polarization and hypocotyl bending require the activity of the trafficking regulator GNOM and the protein kinase PINOID. Our data suggest that gravity-induced PIN3 polarization diverts the auxin flow to mediate the asymmetric distribution of auxin for gravitropic shoot bending.}, author = {Rakusová, Hana and Gallego-Bartolomé, Javier and Vanstraelen, Marleen and Robert, Hélène S and Alabadí, David and Blázquez, Miguel A and Eva Benková and Jirí Friml}, journal = {Plant Journal}, number = {5}, pages = {817 -- 826}, publisher = {Wiley-Blackwell}, title = {{Polarization of PIN3 dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana}}, doi = {10.1111/j.1365-313X.2011.04636.x}, volume = {67}, year = {2011}, } @article{3091, author = {Sauer, Michael and Friml, Jirí}, journal = {Molecular Systems Biology}, publisher = {Nature Publishing Group}, title = {{Fleeting hormone cues get stabilized for plant organogenesis}}, doi = {10.1038/msb.2011.45}, volume = {7}, year = {2011}, } @article{3102, abstract = {Multicellular organisms depend on cell production, cell fate specification, and correct patterning to shape their adult body. In plants, auxin plays a prominent role in the timely coordination of these different cellular processes. A well-studied example is lateral root initiation, in which auxin triggers founder cell specification and cell cycle activation of xylem pole–positioned pericycle cells. Here, we report that the E2Fa transcription factor of Arabidopsis thaliana is an essential component that regulates the asymmetric cell division marking lateral root initiation. Moreover, we demonstrate that E2Fa expression is regulated by the LATERAL ORGAN BOUNDARY DOMAIN18/LATERAL ORGAN BOUNDARY DOMAIN33 (LBD18/LBD33) dimer that is, in turn, regulated by the auxin signaling pathway. LBD18/LBD33 mediates lateral root organogenesis through E2Fa transcriptional activation, whereas E2Fa expression under control of the LBD18 promoter eliminates the need for LBD18. Besides lateral root initiation, vascular patterning is disrupted in E2Fa knockout plants, similarly as it is affected in auxin signaling and lbd mutants, indicating that the transcriptional induction of E2Fa through LBDs represents a general mechanism for auxin-dependent cell cycle activation. Our data illustrate how a conserved mechanism driving cell cycle entry has been adapted evolutionarily to connect auxin signaling with control of processes determining plant architecture. }, author = {Berckmans, Barbara and Vassileva, Valya and Schmid, Stephan P and Maes, Sara and Parizot, Boris and Naramoto, Satoshi and Magyar, Zoltan and Lessa Alvim Kamei, Claire and Koncz, Csaba and Bögre, Laszlo and Persiau, Geert and De Jaeger, Geert and Jirí Friml and Simon, Rüdiger and Beeckman, Tom and de Veyldera, Lieven}, journal = {Plant Cell}, number = {10}, pages = {3671 -- 3683}, publisher = {American Society of Plant Biologists}, title = {{Auxin Dependent cell cycle reactivation through transcriptional regulation of arabidopsis E2Fa by lateral organ boundary proteins}}, doi = {10.1105/tpc.111.088377}, volume = {23}, year = {2011}, } @article{3103, abstract = {Endocytosis in plants has an essential role not only for basic cellular functions but also for growth and development, hormonal signaling and communication with the environment including nutrient delivery, toxin avoidance, and pathogen defense. The major endocytic mechanism in plants depends on the coat protein clathrin. It starts by clathrin-coated vesicle formation at the plasma membrane, where specific cargoes are recognized and packaged for internalization. Recently, genetic, biochemical and advanced microscopy studies provided initial insights into mechanisms and roles of clathrin-mediated endocytosis in plants. Here we summarize the present state of knowledge and compare mechanisms of clathrin-mediated endocytosis in plants with animal and yeast paradigms as well as review plant-specific regulations and roles of this process.}, author = {Chen, Xu and Irani, Niloufer and Friml, Jirí}, journal = {Current Opinion in Plant Biology}, number = {6}, pages = {674 -- 682}, publisher = {Elsevier}, title = {{Clathrin-mediated endocytosis: The gateway into plant cells}}, doi = {10.1016/j.pbi.2011.08.006}, volume = {14}, year = {2011}, } @article{3147, abstract = {Cancer cell of origin is difficult to identify by analyzing cells within terminal stage tumors, whose identity could be concealed by the acquired plasticity. Thus, an ideal approach to identify the cell of origin is to analyze proliferative abnormalities in distinct lineages prior to malignancy. Here, we use mosaic analysis with double markers (MADM) in mice to model gliomagenesis by initiating concurrent p53/Nf1 mutations sporadically in neural stem cells (NSCs). Surprisingly, MADM-based lineage tracing revealed significant aberrant growth prior to malignancy only in oligodendrocyte precursor cells (OPCs), but not in any other NSC-derived lineages or NSCs themselves. Upon tumor formation, phenotypic and transcriptome analyses of tumor cells revealed salient OPC features. Finally, introducing the same p53/Nf1 mutations directly into OPCs consistently led to gliomagenesis. Our findings suggest OPCs as the cell of origin in this model, even when initial mutations occur in NSCs, and highlight the importance of analyzing premalignant stages to identify the cancer cell of origin.}, author = {Liu, Chong and Sage, Jonathan C and Miller, Michael R and Verhaak, Roel G and Simon Hippenmeyer and Vogel, Hannes and Foreman, Oded and Bronson, Roderick T and Nishiyama, Akiko and Luo, Liqun and Zong, Hui}, journal = {Cell}, number = {2}, pages = {209 -- 221}, publisher = {Cell Press}, title = {{Mosaic analysis with double markers reveals tumor cell of origin in glioma}}, doi = {10.1016/j.cell.2011.06.014}, volume = {146}, year = {2011}, } @inproceedings{3204, abstract = {We introduce a new class of functions that can be minimized in polynomial time in the value oracle model. These are functions f satisfying f(x) + f(y) ≥ f(x ∏ y) + f(x ∐ y) where the domain of each variable x i corresponds to nodes of a rooted binary tree, and operations ∏,∐ are defined with respect to this tree. Special cases include previously studied L-convex and bisubmodular functions, which can be obtained with particular choices of trees. We present a polynomial-time algorithm for minimizing functions in the new class. It combines Murota's steepest descent algorithm for L-convex functions with bisubmodular minimization algorithms. }, author = {Vladimir Kolmogorov}, pages = {400 -- 411}, publisher = {Springer}, title = {{Submodularity on a tree: Unifying Submodularity on a tree: Unifying L-convex and bisubmodular functions convex and bisubmodular functions}}, doi = {10.1007/978-3-642-22993-0_37}, volume = {6907}, year = {2011}, } @inproceedings{3206, abstract = {In this paper we address the problem of finding the most probable state of discrete Markov random field (MRF) with associative pairwise terms. Although of practical importance, this problem is known to be NP-hard in general. We propose a new type of MRF decomposition, submod-ular decomposition (SMD). Unlike existing decomposition approaches SMD decomposes the initial problem into sub-problems corresponding to a specific class label while preserving the graph structure of each subproblem. Such decomposition enables us to take into account several types of global constraints in an efficient manner. We study theoretical properties of the proposed approach and demonstrate its applicability on a number of problems.}, author = {Osokin, Anton and Vetrov, Dmitry and Vladimir Kolmogorov}, pages = {1889 -- 1896}, publisher = {IEEE}, title = {{Submodular decomposition framework for inference in associative Markov networks with global constraints}}, doi = {10.1109/CVPR.2011.5995361}, year = {2011}, } @inproceedings{3205, abstract = {This paper proposes a novel Linear Programming (LP) based algorithm, called Dynamic Tree-Block Coordinate Ascent (DT-BCA), for performing maximum a posteriori (MAP) inference in probabilistic graphical models. Unlike traditional message passing algorithms, which operate uniformly on the whole factor graph, our method dynamically chooses regions of the factor graph on which to focus message-passing efforts. We propose two criteria for selecting regions, including an efficiently computable upper-bound on the increase in the objective possible by passing messages in any particular region. This bound is derived from the theory of primal-dual methods from combinatorial optimization, and the forest that maximizes the bounds can be chosen efficiently using a maximum-spanning-tree-like algorithm. Experimental results show that our dynamic schedules significantly speed up state-of-the-art LP-based message-passing algorithms on a wide variety of real-world problems.}, author = {Tarlow, Daniel and Batra, Druv and Kohli, Pushmeet and Vladimir Kolmogorov}, pages = {113 -- 120}, publisher = {Omnipress}, title = {{Dynamic tree block coordinate ascent}}, year = {2011}, } @inproceedings{3207, abstract = {Cosegmentation is typically defined as the task of jointly segmenting something similar in a given set of images. Existing methods are too generic and so far have not demonstrated competitive results for any specific task. In this paper we overcome this limitation by adding two new aspects to cosegmentation: (1) the "something" has to be an object, and (2) the "similarity" measure is learned. In this way, we are able to achieve excellent results on the recently introduced iCoseg dataset, which contains small sets of images of either the same object instance or similar objects of the same class. The challenge of this dataset lies in the extreme changes in viewpoint, lighting, and object deformations within each set. We are able to considerably outperform several competitors. To achieve this performance, we borrow recent ideas from object recognition: the use of powerful features extracted from a pool of candidate object-like segmentations. We believe that our work will be beneficial to several application areas, such as image retrieval.}, author = {Vicente, Sara and Rother, Carsten and Vladimir Kolmogorov}, pages = {2217 -- 2224}, publisher = {IEEE}, title = {{Object cosegmentation}}, doi = {10.1109/CVPR.2011.5995530}, year = {2011}, } @inproceedings{3240, abstract = {The famous Leftover Hash Lemma (LHL) states that (almost) universal hash functions are good randomness extractors. Despite its numerous applications, LHL-based extractors suffer from the following two limitations: - Large Entropy Loss: to extract v bits from distribution X of min-entropy m which are ε-close to uniform, one must set v ≤ m - 2log(1/ε), meaning that the entropy loss L = def m - v ≥ 2 log(1/ε). For many applications, such entropy loss is too large. - Large Seed Length: the seed length n of (almost) universal hash function required by the LHL must be at least n ≥ min (u - v, v + 2log(1/ε)) - O(1), where u is the length of the source, and must grow with the number of extracted bits. Quite surprisingly, we show that both limitations of the LHL - large entropy loss and large seed - can be overcome (or, at least, mitigated) in various important scenarios. First, we show that entropy loss could be reduced to L = log(1/ε) for the setting of deriving secret keys for a wide range of cryptographic applications. Specifically, the security of these schemes with an LHL-derived key gracefully degrades from ε to at most ε + √ε2-L. (Notice that, unlike standard LHL, this bound is meaningful even when one extracts more bits than the min-entropy we have!) Based on these results we build a general computational extractor that enjoys low entropy loss and can be used to instantiate a generic key derivation function for any cryptographic application. Second, we study the soundness of the natural expand-then-extract approach, where one uses a pseudorandom generator (PRG) to expand a short "input seed" S into a longer "output seed" S′, and then use the resulting S′ as the seed required by the LHL (or, more generally, by any randomness extractor). We show that, in general, the expand-then-extract approach is not sound if the Decisional Diffie-Hellman assumption is true. Despite that, we show that it is sound either: (1) when extracting a "small" (logarithmic in the security of the PRG) number of bits; or (2) in minicrypt. Implication (2) suggests that the expand-then-extract approach is likely secure when used with "practical" PRGs, despite lacking a reductionist proof of security! © 2011 International Association for Cryptologic Research.}, author = {Barak, Boaz and Dodis, Yevgeniy and Krawczyk, Hugo and Pereira, Olivier and Krzysztof Pietrzak and Standaert, François-Xavier and Yu, Yu}, pages = {1 -- 20}, publisher = {Springer}, title = {{Leftover hash lemma revisited}}, doi = { 10.1007/978-3-642-22792-9_1}, volume = {6841}, year = {2011}, } @inproceedings{3264, abstract = {Verification of programs with procedures, multi-threaded programs, and higher-order functional programs can be effectively au- tomated using abstraction and refinement schemes that rely on spurious counterexamples for abstraction discovery. The analysis of counterexam- ples can be automated by a series of interpolation queries, or, alterna- tively, as a constraint solving query expressed by a set of recursion free Horn clauses. (A set of interpolation queries can be formulated as a single constraint over Horn clauses with linear dependency structure between the unknown relations.) In this paper we present an algorithm for solving recursion free Horn clauses over a combined theory of linear real/rational arithmetic and uninterpreted functions. Our algorithm performs resolu- tion to deal with the clausal structure and relies on partial solutions to deal with (non-local) instances of functionality axioms.}, author = {Gupta, Ashutosh and Popeea, Corneliu and Rybalchenko, Andrey}, editor = {Yang, Hongseok}, location = {Kenting, Taiwan}, pages = {188 -- 203}, publisher = {Springer}, title = {{Solving recursion-free Horn clauses over LI+UIF}}, doi = {10.1007/978-3-642-25318-8_16}, volume = {7078}, year = {2011}, } @inproceedings{3266, abstract = {We present a joint image segmentation and labeling model (JSL) which, given a bag of figure-ground segment hypotheses extracted at multiple image locations and scales, constructs a joint probability distribution over both the compatible image interpretations (tilings or image segmentations) composed from those segments, and over their labeling into categories. The process of drawing samples from the joint distribution can be interpreted as first sampling tilings, modeled as maximal cliques, from a graph connecting spatially non-overlapping segments in the bag [1], followed by sampling labels for those segments, conditioned on the choice of a particular tiling. We learn the segmentation and labeling parameters jointly, based on Maximum Likelihood with a novel Incremental Saddle Point estimation procedure. The partition function over tilings and labelings is increasingly more accurately approximated by including incorrect configurations that a not-yet-competent model rates probable during learning. We show that the proposed methodologymatches the current state of the art in the Stanford dataset [2], as well as in VOC2010, where 41.7% accuracy on the test set is achieved.}, author = {Ion, Adrian and Carreira, Joao and Sminchisescu, Cristian}, booktitle = {NIPS Proceedings}, location = {Granada, Spain}, pages = {1827 -- 1835}, publisher = {Neural Information Processing Systems Foundation}, title = {{Probabilistic joint image segmentation and labeling}}, volume = {24}, year = {2011}, } @article{3269, abstract = {The unintentional scattering of light between neighboring surfaces in complex projection environments increases the brightness and decreases the contrast, disrupting the appearance of the desired imagery. To achieve satisfactory projection results, the inverse problem of global illumination must be solved to cancel this secondary scattering. In this paper, we propose a global illumination cancellation method that minimizes the perceptual difference between the desired imagery and the actual total illumination in the resulting physical environment. Using Gauss-Newton and active set methods, we design a fast solver for the bound constrained nonlinear least squares problem raised by the perceptual error metrics. Our solver is further accelerated with a CUDA implementation and multi-resolution method to achieve 1–2 fps for problems with approximately 3000 variables. We demonstrate the global illumination cancellation algorithm with our multi-projector system. Results show that our method preserves the color fidelity of the desired imagery significantly better than previous methods.}, author = {Sheng, Yu and Cutler, Barbara and Chen, Chao and Nasman, Joshua}, journal = {Computer Graphics Forum}, number = {4}, pages = {1261 -- 1268}, publisher = {Wiley-Blackwell}, title = {{Perceptual global illumination cancellation in complex projection environments}}, doi = {10.1111/j.1467-8659.2011.01985.x}, volume = {30}, year = {2011}, } @article{3267, abstract = {We address the problem of localizing homology classes, namely, finding the cycle representing a given class with the most concise geometric measure. We study the problem with different measures: volume, diameter and radius. For volume, that is, the 1-norm of a cycle, two main results are presented. First, we prove that the problem is NP-hard to approximate within any constant factor. Second, we prove that for homology of dimension two or higher, the problem is NP-hard to approximate even when the Betti number is O(1). The latter result leads to the inapproximability of the problem of computing the nonbounding cycle with the smallest volume and computing cycles representing a homology basis with the minimal total volume. As for the other two measures defined by pairwise geodesic distance, diameter and radius, we show that the localization problem is NP-hard for diameter but is polynomial for radius. Our work is restricted to homology over the ℤ2 field.}, author = {Chen, Chao and Freedman, Daniel}, journal = {Discrete & Computational Geometry}, number = {3}, pages = {425 -- 448}, publisher = {Springer}, title = {{Hardness results for homology localization}}, doi = {10.1007/s00454-010-9322-8}, volume = {45}, year = {2011}, } @inbook{3268, abstract = {Algebraic topology is generally considered one of the purest subfield of mathematics. However, over the last decade two interesting new lines of research have emerged, one focusing on algorithms for algebraic topology, and the other on applications of algebraic topology in engineering and science. Amongst the new areas in which the techniques have been applied are computer vision and image processing. In this paper, we survey the results of these endeavours. Because algebraic topology is an area of mathematics with which most computer vision practitioners have no experience, we review the machinery behind the theories of homology and persistent homology; our review emphasizes intuitive explanations. In terms of applications to computer vision, we focus on four illustrative problems: shape signatures, natural image statistics, image denoising, and segmentation. Our hope is that this review will stimulate interest on the part of computer vision researchers to both use and extend the tools of this new field. }, author = {Freedman, Daniel and Chen, Chao}, booktitle = {Computer Vision}, pages = {239 -- 268}, publisher = {Nova Science Publishers}, title = {{Algebraic topology for computer vision}}, year = {2011}, } @article{3288, abstract = {The zonula adherens (ZA) of epithelial cells is a site of cell-cell adhesion where cellular forces are exerted and resisted. Increasing evidence indicates that E-cadherin adhesion molecules at the ZA serve to sense force applied on the junctions and coordinate cytoskeletal responses to those forces. Efforts to understand the role that cadherins play in mechanotransduction have been limited by the lack of assays to measure the impact of forces on the ZA. In this study we used 4D imaging of GFP-tagged E-cadherin to analyse the movement of the ZA. Junctions in confluent epithelial monolayers displayed prominent movements oriented orthogonal (perpendicular) to the ZA itself. Two components were identified in these movements: a relatively slow unidirectional (translational) component that could be readily fitted by least-squares regression analysis, upon which were superimposed more rapid oscillatory movements. Myosin IIB was a dominant factor responsible for driving the unilateral translational movements. In contrast, frequency spectrum analysis revealed that depletion of Myosin IIA increased the power of the oscillatory movements. This implies that Myosin IIA may serve to dampen oscillatory movements of the ZA. This extends our recent analysis of Myosin II at the ZA to demonstrate that Myosin IIA and Myosin IIB make distinct contributions to junctional movement at the ZA.}, author = {Smutny, Michael and Wu, Selwin and Gomez, Guillermo and Mangold, Sabine and Yap, Alpha and Hamilton, Nicholas}, journal = {PLoS One}, number = {7}, publisher = {Public Library of Science}, title = {{Multicomponent analysis of junctional movements regulated by Myosin II isoforms at the epithelial zonula adherens}}, doi = {10.1371/journal.pone.0022458}, volume = {6}, year = {2011}, } @article{3286, abstract = {Cationic antimicrobial peptides (CAMPs) selectively target bacterial membranes by electrostatic interactions with negatively charged lipids. It turned out that for inhibition of microbial growth a high CAMP membrane concentration is required, which can be realized by the incorporation of hydrophobic groups within the peptide. Increasing hydrophobicity, however, reduces the CAMP selectivity for bacterial over eukaryotic host membranes, thereby causing the risk of detrimental side-effects. In this study we addressed how cationic amphipathic peptides—in particular a CAMP with Lysine–Leucine–Lysine repeats (termed KLK)—affect the localization and dynamics of molecules in eukaryotic membranes. We found KLK to selectively inhibit the endocytosis of a subgroup of membrane proteins and lipids by electrostatically interacting with negatively charged sialic acid moieties. Ultrastructural characterization revealed the formation of membrane invaginations representing fission or fusion intermediates, in which the sialylated proteins and lipids were immobilized. Experiments on structurally different cationic amphipathic peptides (KLK, 6-MO-LF11-322 and NK14-2) indicated a cooperation of electrostatic and hydrophobic forces that selectively arrest sialylated membrane constituents.}, author = {Weghuber, Julian and Aichinger, Michael C. and Brameshuber, Mario and Stefan Wieser and Verena Ruprecht and Plochberger, Birgit and Madl, Josef and Horner, Andreas and Reipert, Siegfried and Lohner, Karl and Henics, Tamas and Schuetz, Gerhard J}, journal = {Biochimica et Biophysica Acta (BBA) - Biomembranes}, number = {10}, pages = {2581 -- 2590}, publisher = {Elsevier}, title = {{Cationic amphipathic peptides accumulate sialylated proteins and lipids in the plasma membrane of eukaryotic host cells}}, doi = {10.1016/j.bbamem.2011.06.007}, volume = {1808}, year = {2011}, } @article{3287, abstract = {Diffusing membrane constituents are constantly exposed to a variety of forces that influence their stochastic path. Single molecule experiments allow for resolving trajectories at extremely high spatial and temporal accuracy, thereby offering insights into en route interactions of the tracer. In this review we discuss approaches to derive information about the underlying processes, based on single molecule tracking experiments. In particular, we focus on a new versatile way to analyze single molecule diffusion in the absence of a full analytical treatment. The method is based on comprehensive comparison of an experimental data set against the hypothetical outcome of multiple experiments performed on the computer. Since Monte Carlo simulations can be easily and rapidly performed even on state-of-the-art PCs, our method provides a simple way for testing various - even complicated - diffusion models. We describe the new method in detail, and show the applicability on two specific examples: firstly, kinetic rate constants can be derived for the transient interaction of mobile membrane proteins; secondly, residence time and corral size can be extracted for confined diffusion.}, author = {Ruprecht, Verena and Axmann, Markus and Wieser, Stefan and Schuetz, Gerhard}, journal = {Current Protein & Peptide Science}, number = {8}, pages = {714 -- 724}, publisher = {Bentham Science Publishers}, title = {{What can we learn from single molecule trajectories?}}, doi = {10.2174/138920311798841753}, volume = {12}, year = {2011}, } @article{3285, abstract = {Resolving the dynamical interplay of proteins and lipids in the live-cell plasma membrane represents a central goal in current cell biology. Superresolution concepts have introduced a means of capturing spatial heterogeneity at a nanoscopic length scale. Similar concepts for detecting dynamical transitions (superresolution chronoscopy) are still lacking. Here, we show that recently introduced spot-variation fluorescence correlation spectroscopy allows for sensing transient confinement times of membrane constituents at dramatically improved resolution. Using standard diffraction-limited optics, spot-variation fluorescence correlation spectroscopy captures signatures of single retardation events far below the transit time of the tracer through the focal spot. We provide an analytical description of special cases of transient binding of a tracer to pointlike traps, or association of a tracer with nanodomains. The influence of trap mobility and the underlying binding kinetics are quantified. Experimental approaches are suggested that allow for gaining quantitative mechanistic insights into the interaction processes of membrane constituents.}, author = {Ruprecht, Verena and Wieser, Stefan and Marguet, Didier and Schuetz, Gerhard}, journal = {Biophysical Journal}, number = {11}, pages = {2839 -- 2845}, publisher = {Biophysical Society}, title = {{Spot variation fluorescence correlation spectroscopy allows for superresolution chronoscopy of confinement times in membranes}}, doi = {10.1016/j.bpj.2011.04.035}, volume = {100}, year = {2011}, } @inproceedings{3302, abstract = {Cloud computing aims to give users virtually unlimited pay-per-use computing resources without the burden of managing the underlying infrastructure. We present a new job execution environment Flextic that exploits scal- able static scheduling techniques to provide the user with a flexible pricing model, such as a tradeoff between dif- ferent degrees of execution speed and execution price, and at the same time, reduce scheduling overhead for the cloud provider. We have evaluated a prototype of Flextic on Amazon EC2 and compared it against Hadoop. For various data parallel jobs from machine learning, im- age processing, and gene sequencing that we considered, Flextic has low scheduling overhead and reduces job du- ration by up to 15% compared to Hadoop, a dynamic cloud scheduler.}, author = {Henzinger, Thomas A and Singh, Anmol and Singh, Vasu and Wies, Thomas and Zufferey, Damien}, pages = {1 -- 6}, publisher = {USENIX}, title = {{Static scheduling in clouds}}, year = {2011}, } @inproceedings{3301, abstract = {The chemical master equation is a differential equation describing the time evolution of the probability distribution over the possible “states” of a biochemical system. The solution of this equation is of interest within the systems biology field ever since the importance of the molec- ular noise has been acknowledged. Unfortunately, most of the systems do not have analytical solutions, and numerical solutions suffer from the course of dimensionality and therefore need to be approximated. Here, we introduce the concept of tail approximation, which retrieves an approximation of the probabilities in the tail of a distribution from the total probability of the tail and its conditional expectation. This approximation method can then be used to numerically compute the solution of the chemical master equation on a subset of the state space, thus fighting the explosion of the state space, for which this problem is renowned.}, author = {Henzinger, Thomas A and Mateescu, Maria}, publisher = {Tampere International Center for Signal Processing}, title = {{Tail approximation for the chemical master equation}}, year = {2011}, } @inproceedings{3299, abstract = {We introduce propagation models, a formalism designed to support general and efficient data structures for the transient analysis of biochemical reaction networks. We give two use cases for propagation abstract data types: the uniformization method and numerical integration. We also sketch an implementation of a propagation abstract data type, which uses abstraction to approximate states.}, author = {Henzinger, Thomas A and Mateescu, Maria}, location = {Paris, France}, pages = {1 -- 3}, publisher = {Springer}, title = {{Propagation models for computing biochemical reaction networks}}, doi = {10.1145/2037509.2037510}, year = {2011}, } @inproceedings{3316, abstract = {In addition to being correct, a system should be robust, that is, it should behave reasonably even after receiving unexpected inputs. In this paper, we summarize two formal notions of robustness that we have introduced previously for reactive systems. One of the notions is based on assigning costs for failures on a user-provided notion of incorrect transitions in a specification. Here, we define a system to be robust if a finite number of incorrect inputs does not lead to an infinite number of incorrect outputs. We also give a more refined notion of robustness that aims to minimize the ratio of output failures to input failures. The second notion is aimed at liveness. In contrast to the previous notion, it has no concept of recovery from an error. Instead, it compares the ratio of the number of liveness constraints that the system violates to the number of liveness constraints that the environment violates.}, author = {Bloem, Roderick and Chatterjee, Krishnendu and Greimel, Karin and Henzinger, Thomas A and Jobstmann, Barbara}, booktitle = {6th IEEE International Symposium on Industrial and Embedded Systems}, location = {Vasteras, Sweden}, pages = {176 -- 185}, publisher = {IEEE}, title = {{Specification-centered robustness}}, doi = {10.1109/SIES.2011.5953660}, year = {2011}, } @article{3318, abstract = {Parvalbumin is thought to act in a manner similar to EGTA, but how a slow Ca2+ buffer affects nanodomain-coupling regimes at GABAergic synapses is unclear. Direct measurements of parvalbumin concentration and paired recordings in rodent hippocampus and cerebellum revealed that parvalbumin affects synaptic dynamics only when expressed at high levels. Modeling suggests that, in high concentrations, parvalbumin may exert BAPTA-like effects, modulating nanodomain coupling via competition with local saturation of endogenous fixed buffers.}, author = {Eggermann, Emmanuel and Jonas, Peter M}, journal = {Nature Neuroscience}, pages = {20 -- 22}, publisher = {Nature Publishing Group}, title = {{How the “slow” Ca(2+) buffer parvalbumin affects transmitter release in nanodomain coupling regimes at GABAergic synapses}}, doi = {10.1038/nn.3002}, volume = {15}, year = {2011}, } @inbook{3335, abstract = {We study the topology of the Megaparsec Cosmic Web in terms of the scale-dependent Betti numbers, which formalize the topological information content of the cosmic mass distribution. While the Betti numbers do not fully quantify topology, they extend the information beyond conventional cosmological studies of topology in terms of genus and Euler characteristic. The richer information content of Betti numbers goes along the availability of fast algorithms to compute them. For continuous density fields, we determine the scale-dependence of Betti numbers by invoking the cosmologically familiar filtration of sublevel or superlevel sets defined by density thresholds. For the discrete galaxy distribution, however, the analysis is based on the alpha shapes of the particles. These simplicial complexes constitute an ordered sequence of nested subsets of the Delaunay tessellation, a filtration defined by the scale parameter, α. As they are homotopy equivalent to the sublevel sets of the distance field, they are an excellent tool for assessing the topological structure of a discrete point distribution. In order to develop an intuitive understanding for the behavior of Betti numbers as a function of α, and their relation to the morphological patterns in the Cosmic Web, we first study them within the context of simple heuristic Voronoi clustering models. These can be tuned to consist of specific morphological elements of the Cosmic Web, i.e. clusters, filaments, or sheets. To elucidate the relative prominence of the various Betti numbers in different stages of morphological evolution, we introduce the concept of alpha tracks. Subsequently, we address the topology of structures emerging in the standard LCDM scenario and in cosmological scenarios with alternative dark energy content. The evolution of the Betti numbers is shown to reflect the hierarchical evolution of the Cosmic Web. We also demonstrate that the scale-dependence of the Betti numbers yields a promising measure of cosmological parameters, with a potential to help in determining the nature of dark energy and to probe primordial non-Gaussianities. We also discuss the expected Betti numbers as a function of the density threshold for superlevel sets of a Gaussian random field. Finally, we introduce the concept of persistent homology. It measures scale levels of the mass distribution and allows us to separate small from large scale features. Within the context of the hierarchical cosmic structure formation, persistence provides a natural formalism for a multiscale topology study of the Cosmic Web.}, author = {Van De Weygaert, Rien and Vegter, Gert and Edelsbrunner, Herbert and Jones, Bernard and Pranav, Pratyush and Park, Changbom and Hellwing, Wojciech and Eldering, Bob and Kruithof, Nico and Bos, Patrick and Hidding, Johan and Feldbrugge, Job and Ten Have, Eline and Van Engelen, Matti and Caroli, Manuel and Teillaud, Monique}, booktitle = {Transactions on Computational Science XIV}, editor = {Gavrilova, Marina and Tan, Kenneth and Mostafavi, Mir}, pages = {60 -- 101}, publisher = {Springer}, title = {{Alpha, Betti and the Megaparsec Universe: On the topology of the Cosmic Web}}, doi = {10.1007/978-3-642-25249-5_3}, volume = {6970}, year = {2011}, } @inproceedings{3329, abstract = {We consider the offset-deconstruction problem: Given a polygonal shape Q with n vertices, can it be expressed, up to a tolerance µ in Hausdorff distance, as the Minkowski sum of another polygonal shape P with a disk of fixed radius? If it does, we also seek a preferably simple-looking solution shape P; then, P's offset constitutes an accurate, vertex-reduced, and smoothened approximation of Q. We give an O(n log n)-time exact decision algorithm that handles any polygonal shape, assuming the real-RAM model of computation. An alternative algorithm, based purely on rational arithmetic, answers the same deconstruction problem, up to an uncertainty parameter, and its running time depends on the parameter δ (in addition to the other input parameters: n, δ and the radius of the disk). If the input shape is found to be approximable, the rational-arithmetic algorithm also computes an approximate solution shape for the problem. For convex shapes, the complexity of the exact decision algorithm drops to O(n), which is also the time required to compute a solution shape P with at most one more vertex than a vertex-minimal one. Our study is motivated by applications from two different domains. However, since the offset operation has numerous uses, we anticipate that the reverse question that we study here will be still more broadly applicable. We present results obtained with our implementation of the rational-arithmetic algorithm.}, author = {Berberich, Eric and Halperin, Dan and Kerber, Michael and Pogalnikova, Roza}, booktitle = {Proceedings of the twenty-seventh annual symposium on Computational geometry}, location = {Paris, France}, pages = {187 -- 196}, publisher = {ACM}, title = {{Deconstructing approximate offsets}}, doi = {10.1145/1998196.1998225}, year = {2011}, } @article{3332, abstract = {Given an algebraic hypersurface O in ℝd, how many simplices are necessary for a simplicial complex isotopic to O? We address this problem and the variant where all vertices of the complex must lie on O. We give asymptotically tight worst-case bounds for algebraic plane curves. Our results gradually improve known bounds in higher dimensions; however, the question for tight bounds remains unsolved for d ≥ 3.}, author = {Kerber, Michael and Sagraloff, Michael}, journal = {Graphs and Combinatorics}, number = {3}, pages = {419 -- 430}, publisher = {Springer}, title = {{A note on the complexity of real algebraic hypersurfaces}}, doi = {10.1007/s00373-011-1020-7}, volume = {27}, year = {2011}, } @inproceedings{3330, abstract = {We consider the problem of approximating all real roots of a square-free polynomial f. Given isolating intervals, our algorithm refines each of them to a width at most 2-L, that is, each of the roots is approximated to L bits after the binary point. Our method provides a certified answer for arbitrary real polynomials, only requiring finite approximations of the polynomial coefficient and choosing a suitable working precision adaptively. In this way, we get a correct algorithm that is simple to implement and practically efficient. Our algorithm uses the quadratic interval refinement method; we adapt that method to be able to cope with inaccuracies when evaluating f, without sacrificing its quadratic convergence behavior. We prove a bound on the bit complexity of our algorithm in terms of degree, coefficient size and discriminant. Our bound improves previous work on integer polynomials by a factor of deg f and essentially matches best known theoretical bounds on root approximation which are obtained by very sophisticated algorithms.}, author = {Kerber, Michael and Sagraloff, Michael}, location = {California, USA}, pages = {209 -- 216}, publisher = {Springer}, title = {{Root refinement for real polynomials}}, doi = {10.1145/1993886.1993920}, year = {2011}, } @inproceedings{3328, abstract = {We report on a generic uni- and bivariate algebraic kernel that is publicly available with CGAL 3.7. It comprises complete, correct, though efficient state-of-the-art implementations on polynomials, roots of polynomial systems, and the support to analyze algebraic curves defined by bivariate polynomials. The kernel design is generic, that is, various number types and substeps can be exchanged. It is accompanied with a ready-to-use interface to enable arrangements induced by algebraic curves, that have already been used as basis for various geometric applications, as arrangements on Dupin cyclides or the triangulation of algebraic surfaces. We present two novel applications: arrangements of rotated algebraic curves and Boolean set operations on polygons bounded by segments of algebraic curves. We also provide experiments showing that our general implementation is competitive and even often clearly outperforms existing implementations that are explicitly tailored for specific types of non-linear curves that are available in CGAL.}, author = {Berberich, Eric and Hemmer, Michael and Kerber, Michael}, location = {Paris, France}, pages = {179 -- 186}, publisher = {ACM}, title = {{A generic algebraic kernel for non linear geometric applications}}, doi = {10.1145/1998196.1998224}, year = {2011}, } @article{3334, author = {Edelsbrunner, Herbert and Pach, János and Ziegler, Günter}, journal = {Discrete & Computational Geometry}, number = {1}, pages = {1 -- 2}, publisher = {Springer}, title = {{Letter from the new editors-in-chief}}, doi = {10.1007/s00454-010-9313-9}, volume = {45}, year = {2011}, } @article{3353, abstract = {Compositional theories are crucial when designing large and complex systems from smaller components. In this work we propose such a theory for synchronous concurrent systems. Our approach follows so-called interface theories, which use game-theoretic interpretations of composition and refinement. These are appropriate for systems with distinct inputs and outputs, and explicit conditions on inputs that must be enforced during composition. Our interfaces model systems that execute in an infinite sequence of synchronous rounds. At each round, a contract must be satisfied. The contract is simply a relation specifying the set of valid input/output pairs. Interfaces can be composed by parallel, serial or feedback composition. A refinement relation between interfaces is defined, and shown to have two main properties: (1) it is preserved by composition, and (2) it is equivalent to substitutability, namely, the ability to replace an interface by another one in any context. Shared refinement and abstraction operators, corresponding to greatest lower and least upper bounds with respect to refinement, are also defined. Input-complete interfaces, that impose no restrictions on inputs, and deterministic interfaces, that produce a unique output for any legal input, are discussed as special cases, and an interesting duality between the two classes is exposed. A number of illustrative examples are provided, as well as algorithms to compute compositions, check refinement, and so on, for finite-state interfaces.}, author = {Tripakis, Stavros and Lickly, Ben and Henzinger, Thomas A and Lee, Edward}, journal = {ACM Transactions on Programming Languages and Systems (TOPLAS)}, number = {4}, publisher = {ACM}, title = {{A theory of synchronous relational interfaces}}, doi = {10.1145/1985342.1985345}, volume = {33}, year = {2011}, } @inproceedings{3355, abstract = {Byzantine Fault Tolerant (BFT) protocols aim to improve the reliability of distributed systems. They enable systems to tolerate arbitrary failures in a bounded number of nodes. BFT protocols are usually proven correct for certain safety and liveness properties. However, recent studies have shown that the performance of state-of-the-art BFT protocols decreases drastically in the presence of even a single malicious node. This motivates a formal quantitative analysis of BFT protocols to investigate their performance characteristics under different scenarios. We present HyPerf, a new hybrid methodology based on model checking and simulation techniques for evaluating the performance of BFT protocols. We build a transition system corresponding to a BFT protocol and systematically explore the set of behaviors allowed by the protocol. We associate certain timing information with different operations in the protocol, like cryptographic operations and message transmission. After an elaborate state exploration, we use the time information to evaluate the performance characteristics of the protocol using simulation techniques. We integrate our framework in Mace, a tool for building and verifying distributed systems. We evaluate the performance of PBFT using our framework. We describe two different use-cases of our methodology. For the benign operation of the protocol, we use the time information as random variables to compute the probability distribution of the execution times. In the presence of faults, we estimate the worst-case performance of the protocol for various attacks that can be employed by malicious nodes. Our results show the importance of hybrid techniques in systematically analyzing the performance of large-scale systems.}, author = {Halalai, Raluca and Henzinger, Thomas A and Singh, Vasu}, location = {Aachen, Germany}, pages = {255 -- 264}, publisher = {IEEE}, title = {{Quantitative evaluation of BFT protocols}}, doi = {10.1109/QEST.2011.40}, year = {2011}, } @inproceedings{3350, abstract = {A controller for a discrete game with ω-regular objectives requires attention if, intuitively, it requires measuring the state and switching from the current control action. Minimum attention controllers are preferable in modern shared implementations of cyber-physical systems because they produce the least burden on system resources such as processor time or communication bandwidth. We give algorithms to compute minimum attention controllers for ω-regular objectives in imperfect information discrete two-player games. We show a polynomial-time reduction from minimum attention controller synthesis to synthesis of controllers for mean-payoff parity objectives in games of incomplete information. This gives an optimal EXPTIME-complete synthesis algorithm. We show that the minimum attention controller problem is decidable for infinite state systems with finite bisimulation quotients. In particular, the problem is decidable for timed and rectangular automata.}, author = {Chatterjee, Krishnendu and Majumdar, Ritankar}, editor = {Fahrenberg, Uli and Tripakis, Stavros}, location = {Aalborg, Denmark}, pages = {145 -- 159}, publisher = {Springer}, title = {{Minimum attention controller synthesis for omega regular objectives}}, doi = {10.1007/978-3-642-24310-3_11}, volume = {6919}, year = {2011}, } @inproceedings{3351, abstract = {In two-player games on graph, the players construct an infinite path through the game graph and get a reward computed by a payoff function over infinite paths. Over weighted graphs, the typical and most studied payoff functions compute the limit-average or the discounted sum of the rewards along the path. Besides their simple definition, these two payoff functions enjoy the property that memoryless optimal strategies always exist. In an attempt to construct other simple payoff functions, we define a class of payoff functions which compute an (infinite) weighted average of the rewards. This new class contains both the limit-average and the discounted sum functions, and we show that they are the only members of this class which induce memoryless optimal strategies, showing that there is essentially no other simple payoff functions.}, author = {Chatterjee, Krishnendu and Doyen, Laurent and Singh, Rohit}, editor = {Owe, Olaf and Steffen, Martin and Telle, Jan Arne}, location = {Oslo, Norway}, pages = {148 -- 159}, publisher = {Springer}, title = {{On memoryless quantitative objectives}}, doi = {10.1007/978-3-642-22953-4_13}, volume = {6914}, year = {2011}, } @article{3354, abstract = {We consider two-player games played on a finite state space for an infinite number of rounds. The games are concurrent: in each round, the two players (player 1 and player 2) choose their moves independently and simultaneously; the current state and the two moves determine the successor state. We consider ω-regular winning conditions specified as parity objectives. Both players are allowed to use randomization when choosing their moves. We study the computation of the limit-winning set of states, consisting of the states where the sup-inf value of the game for player 1 is 1: in other words, a state is limit-winning if player 1 can ensure a probability of winning arbitrarily close to 1. We show that the limit-winning set can be computed in O(n2d+2) time, where n is the size of the game structure and 2d is the number of priorities (or colors). The membership problem of whether a state belongs to the limit-winning set can be decided in NP ∩ coNP. While this complexity is the same as for the simpler class of turn-based parity games, where in each state only one of the two players has a choice of moves, our algorithms are considerably more involved than those for turn-based games. This is because concurrent games do not satisfy two of the most fundamental properties of turn-based parity games. First, in concurrent games limit-winning strategies require randomization; and second, they require infinite memory.}, author = {Chatterjee, Krishnendu and De Alfaro, Luca and Henzinger, Thomas A}, journal = {ACM Transactions on Computational Logic (TOCL)}, number = {4}, publisher = {ACM}, title = {{Qualitative concurrent parity games}}, doi = {10.1145/1970398.1970404}, volume = {12}, year = {2011}, } @inproceedings{3349, abstract = {Games on graphs provide a natural model for reactive non-terminating systems. In such games, the interaction of two players on an arena results in an infinite path that describes a run of the system. Different settings are used to model various open systems in computer science, as for instance turn-based or concurrent moves, and deterministic or stochastic transitions. In this paper, we are interested in turn-based games, and specifically in deterministic parity games and stochastic reachability games (also known as simple stochastic games). We present a simple, direct and efficient reduction from deterministic parity games to simple stochastic games: it yields an arena whose size is linear up to a logarithmic factor in size of the original arena.}, author = {Chatterjee, Krishnendu and Fijalkow, Nathanaël}, location = {Minori, Italy}, pages = {74 -- 86}, publisher = {EPTCS}, title = {{A reduction from parity games to simple stochastic games}}, doi = {10.4204/EPTCS.54.6}, volume = {54}, year = {2011}, } @article{335, abstract = {Recently reported synthetic routes for the production of hollow nanoparticles have stimulated significant interest for the possibilities this novel geometry offers. While advantageous properties have been found and innovative applications have been proposed, the development of the full potential of these new nanostructures is still strongly tied to the extent of control that can be accomplished over their characteristics (e.g., composition, size, shell thickness, and nanocrystalline structure). In the present work, we investigate the means and limits of control over these parameters that can be obtained by the Kirkendall effect synthetic route on cadmium chalcogenide nanocrystalline shells. We demonstrate that the selection of the reactants and oxidation conditions allows some extent of control of the nanocrystalline structure and thickness of the shell. However, the tuning range is limited by the intrinsic restrictions of the synthetic procedure and by the dependence of the particle geometry on the same reaction conditions. Thus, we further explore the range of control over the shell parameters that can be accomplished through post-synthesis processes, such as chemical etching and thermal annealing. }, author = {Ibáñez, Maria and Fan, Jiandong and Li, Wenhua and Cadavid, Doris and Nafria, Raquel and Carrete, Alex and Cabot, Andreu}, journal = {Chemistry of Materials}, number = {12}, pages = {3095 -- 3104}, publisher = {American Chemical Society}, title = {{Means and limits of control of the shell parameters in hollow nanoparticles obtained by the Kirkendall effect}}, doi = {10.1021/cm2006633}, volume = {23}, year = {2011}, } @article{3352, abstract = {Exploring the connection of biology with reactive systems to better understand living systems.}, author = {Fisher, Jasmin and Harel, David and Henzinger, Thomas A}, journal = {Communications of the ACM}, number = {10}, pages = {72 -- 82}, publisher = {ACM}, title = {{Biology as reactivity}}, doi = {10.1145/2001269.2001289}, volume = {54}, year = {2011}, } @inproceedings{3362, abstract = {State-transition systems communicating by shared variables have been the underlying model of choice for applications of model checking. Such formalisms, however, have difficulty with modeling process creation or death and communication reconfigurability. Here, we introduce “dynamic reactive modules” (DRM), a state-transition modeling formalism that supports dynamic reconfiguration and creation/death of processes. The resulting formalism supports two types of variables, data variables and reference variables. Reference variables enable changing the connectivity between processes and referring to instances of processes. We show how this new formalism supports parallel composition and refinement through trace containment. DRM provide a natural language for modeling (and ultimately reasoning about) biological systems and multiple threads communicating through shared variables.}, author = {Fisher, Jasmin and Henzinger, Thomas A and Nickovic, Dejan and Piterman, Nir and Singh, Anmol and Vardi, Moshe}, location = {Aachen, Germany}, pages = {404 -- 418}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Dynamic reactive modules}}, doi = {10.1007/978-3-642-23217-6_27}, volume = {6901}, year = {2011}, } @inproceedings{3365, abstract = {We present the tool Quasy, a quantitative synthesis tool. Quasy takes qualitative and quantitative specifications and automatically constructs a system that satisfies the qualitative specification and optimizes the quantitative specification, if such a system exists. The user can choose between a system that satisfies and optimizes the specifications (a) under all possible environment behaviors or (b) under the most-likely environment behaviors given as a probability distribution on the possible input sequences. Quasy solves these two quantitative synthesis problems by reduction to instances of 2-player games and Markov Decision Processes (MDPs) with quantitative winning objectives. Quasy can also be seen as a game solver for quantitative games. Most notable, it can solve lexicographic mean-payoff games with 2 players, MDPs with mean-payoff objectives, and ergodic MDPs with mean-payoff parity objectives.}, author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Jobstmann, Barbara and Singh, Rohit}, location = {Saarbrucken, Germany}, pages = {267 -- 271}, publisher = {Springer}, title = {{QUASY: quantitative synthesis tool}}, doi = {10.1007/978-3-642-19835-9_24}, volume = {6605}, year = {2011}, } @inproceedings{3367, abstract = {In this paper, we present the first output-sensitive algorithm to compute the persistence diagram of a filtered simplicial complex. For any Γ>0, it returns only those homology classes with persistence at least Γ. Instead of the classical reduction via column operations, our algorithm performs rank computations on submatrices of the boundary matrix. For an arbitrary constant δ ∈ (0,1), the running time is O(C(1-δ)ΓR(n)log n), where C(1-δ)Γ is the number of homology classes with persistence at least (1-δ)Γ, n is the total number of simplices, and R(n) is the complexity of computing the rank of an n x n matrix with O(n) nonzero entries. Depending on the choice of the rank algorithm, this yields a deterministic O(C(1-δ)Γn2.376) algorithm, a O(C(1-δ)Γn2.28) Las-Vegas algorithm, or a O(C(1-δ)Γn2+ε) Monte-Carlo algorithm for an arbitrary ε>0.}, author = {Chen, Chao and Kerber, Michael}, location = {Paris, France}, pages = {207 -- 216}, publisher = {ACM}, title = {{An output sensitive algorithm for persistent homology}}, doi = {10.1145/1998196.1998228}, year = {2011}, } @unpublished{3363, abstract = {We consider probabilistic automata on infinite words with acceptance defined by safety, reachability, Büchi, coBüchi, and limit-average conditions. We consider quantitative and qualitative decision problems. We present extensions and adaptations of proofs for probabilistic finite automata and present a complete characterization of the decidability and undecidability frontier of the quantitative and qualitative decision problems for probabilistic automata on infinite words.}, author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Tracol, Mathieu}, pages = {19}, publisher = {ArXiv}, title = {{The decidability frontier for probabilistic automata on infinite words}}, year = {2011}, } @article{3372, abstract = {Nowak et al.1 argue that inclusive fitness theory has been of little value in explaining the natural world, and that it has led to negligible progress in explaining the evolution of eusociality. However, we believe that their arguments are based upon a misunderstanding of evolutionary theory and a misrepresentation of the empirical literature. We will focus our comments on three general issues.}, author = {Abbot, Patrick and Abe, Jun and Alcock, John and Alizon, Samuel and Alpedrinha, Joao and Andersson, Malte and Andre, Jean and Van Baalen, Minus and Balloux, Francois and Balshine, Sigal and Barton, Nicholas H and Beukeboom, Leo and Biernaskie, Jay and Bilde, Trine and Borgia, Gerald and Breed, Michael and Brown, Sam and Bshary, Redouan and Buckling, Angus and Burley, Nancy and Burton Chellew, Max and Cant, Michael and Chapuisat, Michel and Charnov, Eric and Clutton Brock, Tim and Cockburn, Andrew and Cole, Blaine and Colegrave, Nick and Cosmides, Leda and Couzin, Iain and Coyne, Jerry and Creel, Scott and Crespi, Bernard and Curry, Robert and Dall, Sasha and Day, Troy and Dickinson, Janis and Dugatkin, Lee and El Mouden, Claire and Emlen, Stephen and Evans, Jay and Ferriere, Regis and Field, Jeremy and Foitzik, Susanne and Foster, Kevin and Foster, William and Fox, Charles and Gadau, Juergen and Gandon, Sylvain and Gardner, Andy and Gardner, Michael and Getty, Thomas and Goodisman, Michael and Grafen, Alan and Grosberg, Rick and Grozinger, Christina and Gouyon, Pierre and Gwynne, Darryl and Harvey, Paul and Hatchwell, Ben and Heinze, Jürgen and Helantera, Heikki and Helms, Ken and Hill, Kim and Jiricny, Natalie and Johnstone, Rufus and Kacelnik, Alex and Kiers, E Toby and Kokko, Hanna and Komdeur, Jan and Korb, Judith and Kronauer, Daniel and Kümmerli, Rolf and Lehmann, Laurent and Linksvayer, Timothy and Lion, Sébastien and Lyon, Bruce and Marshall, James and Mcelreath, Richard and Michalakis, Yannis and Michod, Richard and Mock, Douglas and Monnin, Thibaud and Montgomerie, Robert and Moore, Allen and Mueller, Ulrich and Noë, Ronald and Okasha, Samir and Pamilo, Pekka and Parker, Geoff and Pedersen, Jes and Pen, Ido and Pfennig, David and Queller, David and Rankin, Daniel and Reece, Sarah and Reeve, Hudson and Reuter, Max and Roberts, Gilbert and Robson, Simon and Roze, Denis and Rousset, Francois and Rueppell, Olav and Sachs, Joel and Santorelli, Lorenzo and Schmid Hempel, Paul and Schwarz, Michael and Scott Phillips, Tom and Shellmann Sherman, Janet and Sherman, Paul and Shuker, David and Smith, Jeff and Spagna, Joseph and Strassmann, Beverly and Suarez, Andrew and Sundström, Liselotte and Taborsky, Michael and Taylor, Peter and Thompson, Graham and Tooby, John and Tsutsui, Neil and Tsuji, Kazuki and Turillazzi, Stefano and Úbeda, Francisco and Vargo, Edward and Voelkl, Bernard and Wenseleers, Tom and West, Stuart and West Eberhard, Mary and Westneat, David and Wiernasz, Diane and Wild, Geoff and Wrangham, Richard and Young, Andrew and Zeh, David and Zeh, Jeanne and Zink, Andrew}, journal = {Nature}, number = {7339}, pages = {E1 -- E4}, publisher = {Nature Publishing Group}, title = {{Inclusive fitness theory and eusociality}}, doi = {10.1038/nature09831}, volume = {471}, year = {2011}, } @article{3371, abstract = {The Minisymposium “Cell Migration and Motility” was attended by approximately 500 visitors and covered a broad range of questions in the field using diverse model systems. Topics comprised actin dynamics, cell polarity, force transduction, signal transduction, bar- rier transmigration, and chemotactic guidance.}, author = {Sixt, Michael K and Parent, Carole}, journal = {Molecular Biology and Evolution}, number = {6}, pages = {724}, publisher = {Oxford University Press}, title = {{Cells on the move in Philadelphia}}, doi = {10.1091/mbc.E10-12-0958}, volume = {22}, year = {2011}, } @article{3374, abstract = {Genetic regulatory networks enable cells to respond to changes in internal and external conditions by dynamically coordinating their gene expression profiles. Our ability to make quantitative measurements in these biochemical circuits has deepened our understanding of what kinds of computations genetic regulatory networks can perform, and with what reliability. These advances have motivated researchers to look for connections between the architecture and function of genetic regulatory networks. Transmitting information between a network's inputs and outputs has been proposed as one such possible measure of function, relevant in certain biological contexts. Here we summarize recent developments in the application of information theory to gene regulatory networks. We first review basic concepts in information theory necessary for understanding recent work. We then discuss the functional complexity of gene regulation, which arises from the molecular nature of the regulatory interactions. We end by reviewing some experiments that support the view that genetic networks responsible for early development of multicellular organisms might be maximizing transmitted 'positional information'.}, author = {Tkacik, Gasper and Walczak, Aleksandra}, journal = {Journal of Physics: Condensed Matter}, number = {15}, publisher = {IOP Publishing Ltd.}, title = {{Information transmission in genetic regulatory networks a review}}, doi = {10.1088/0953-8984/23/15/153102}, volume = {23}, year = {2011}, } @article{3368, abstract = {Tissue surface tension (TST) is an important mechanical property influencing cell sorting and tissue envelopment. The study by Manning et al. (1) reported on a mathematical model describing TST on the basis of the balance between adhesive and tensile properties of the constituent cells. The model predicts that, in high-adhesion cell aggregates, surface cells will be stretched to maintain the same area of cell–cell contact as interior bulk cells, resulting in an elongated and flattened cell shape. The authors (1) observed flat and elongated cells at the surface of high-adhesion zebrafish germ-layer explants, which they argue are undifferentiated stretched germ-layer progenitor cells, and they use this observation as a validation of their model.}, author = {Krens, Gabriel and Möllmert, Stephanie and Heisenberg, Carl-Philipp J}, journal = {PNAS}, number = {3}, pages = {E9 -- E10}, publisher = {National Academy of Sciences}, title = {{Enveloping cell layer differentiation at the surface of zebrafish germ layer tissue explants}}, doi = {10.1073/pnas.1010767108}, volume = {108}, year = {2011}, } @article{3370, abstract = {Supertree methods are widely applied and give rise to new conclusions about phylogenies (e.g., Bininda-Emonds et al. 2007). Although several desiderata for supertree methods exist (Wilkinson, Thorley, et al. 2004), only few of them have been studied in greater detail, examples include shape bias (Wilkinson et al. 2005) or pareto properties (Wilkinson et al. 2007). Here I look more closely at two matrix representation methods, matrix representation with compatibility (MRC) and matrix representation with parsimony (MRP). Different null models of random data are studied and the resulting tree shapes are investigated. Thereby I consider unrooted trees and a bias in tree shape is determined by a tree balance measure. The measure for unrooted trees is a modification of a tree balance measure for rooted trees. I observe that depending on the underlying null model of random data, the methods may resolve conflict in favor of more balanced tree shapes. The analyses refer only to trees with the same taxon set, also known as the consensus setting (e.g., Wilkinson et al. 2007), but I will be able to draw conclusions on how to deal with missing data.}, author = {Kupczok, Anne}, journal = {Systematic Biology}, number = {2}, pages = {218 -- 225}, publisher = {Oxford University Press}, title = {{Consequences of different null models on the tree shape bias of supertree methods}}, doi = {10.1093/sysbio/syq086}, volume = {60}, year = {2011}, } @article{3369, abstract = {Rab3 interacting molecules (RIMs) are highly enriched in the active zones of presynaptic terminals. It is generally thought that they operate as effectors of the small G protein Rab3. Three recent papers, by Han et al. (this issue of Neuron), Deng et al. (this issue of Neuron), and Kaeser et al. (a recent issue of Cell), shed new light on the functional role of RIM in presynaptic terminals. First, RIM tethers Ca2+ channels to active zones. Second, RIM contributes to priming of synaptic vesicles by interacting with another presynaptic protein, Munc13.}, author = {Pernia-Andrade, Alejandro and Jonas, Peter M}, journal = {Neuron}, number = {2}, pages = {185 -- 187}, publisher = {Elsevier}, title = {{The multiple faces of RIM}}, doi = {10.1016/j.neuron.2011.01.010}, volume = {69}, year = {2011}, } @article{3396, abstract = {Facial branchiomotor neurons (FBMNs) in zebrafish and mouse embryonic hindbrain undergo a characteristic tangential migration from rhombomere (r) 4, where they are born, to r6/7. Cohesion among neuroepithelial cells (NCs) has been suggested to function in FBMN migration by inhibiting FBMNs positioned in the basal neuroepithelium such that they move apically between NCs towards the midline of the neuroepithelium instead of tangentially along the basal side of the neuroepithelium towards r6/7. However, direct experimental evaluation of this hypothesis is still lacking. Here, we have used a combination of biophysical cell adhesion measurements and high-resolution time-lapse microscopy to determine the role of NC cohesion in FBMN migration. We show that reducing NC cohesion by interfering with Cadherin 2 (Cdh2) activity results in FBMNs positioned at the basal side of the neuroepithelium moving apically towards the neural tube midline instead of tangentially towards r6/7. In embryos with strongly reduced NC cohesion, ectopic apical FBMN movement frequently results in fusion of the bilateral FBMN clusters over the apical midline of the neural tube. By contrast, reducing cohesion among FBMNs by interfering with Contactin 2 (Cntn2) expression in these cells has little effect on apical FBMN movement, but reduces the fusion of the bilateral FBMN clusters in embryos with strongly diminished NC cohesion. These data provide direct experimental evidence that NC cohesion functions in tangential FBMN migration by restricting their apical movement.}, author = {Stockinger, Petra and Heisenberg, Carl-Philipp J and Maître, Jean-Léon}, journal = {Development}, number = {21}, pages = {4673 -- 4683}, publisher = {Company of Biologists}, title = {{Defective neuroepithelial cell cohesion affects tangential branchiomotor neuron migration in the zebrafish neural tube}}, doi = {10.1242/dev.071233}, volume = {138}, year = {2011}, } @article{3394, abstract = {Random genetic drift shifts clines in space, alters their width, and distorts their shape. Such random fluctuations complicate inferences from cline width and position. Notably, the effect of genetic drift on the expected shape of the cline is opposite to the naive (but quite common) misinterpretation of classic results on the expected cline. While random drift on average broadens the overall cline in expected allele frequency, it narrows the width of any particular cline. The opposing effects arise because locally, drift drives alleles to fixation—but fluctuations in position widen the expected cline. The effect of genetic drift can be predicted from standardized variance in allele frequencies, averaged across the habitat: 〈F〉. A cline maintained by spatially varying selection (step change) is expected to be narrower by a factor of relative to the cline in the absence of drift. The expected cline is broader by the inverse of this factor. In a tension zone maintained by underdominance, the expected cline width is narrower by about 1 – 〈F〉relative to the width in the absence of drift. Individual clines can differ substantially from the expectation, and we give quantitative predictions for the variance in cline position and width. The predictions apply to clines in almost one-dimensional circumstances such as hybrid zones in rivers, deep valleys, or along a coast line and give a guide to what patterns to expect in two dimensions.}, author = {Polechova, Jitka and Barton, Nicholas H}, journal = {Genetics}, number = {1}, pages = {227 -- 235}, publisher = {Genetics Society of America}, title = {{Genetic drift widens the expected cline but narrows the expected cline width}}, doi = {10.1534/genetics.111.129817}, volume = {189}, year = {2011}, } @article{3390, abstract = {What determines the genetic contribution that an individual makes to future generations? With biparental reproduction, each individual leaves a 'pedigree' of descendants, determined by the biparental relationships in the population. The pedigree of an individual constrains the lines of descent of each of its genes. An individual's reproductive value is the expected number of copies of each of its genes that is passed on to distant generations conditional on its pedigree. For the simplest model of biparental reproduction analogous to the Wright-Fisher model, an individual's reproductive value is determined within ~10 generations, independent of population size. Partial selfing and subdivision do not greatly slow this convergence. Our central result is that the probability that a gene will survive is proportional to the reproductive value of the individual that carries it, and that conditional on survival, after a few tens of generations, the distribution of the number of surviving copies is the same for all individuals, whatever their reproductive value. These results can be generalized to the joint distribution of surviving blocks of ancestral genome. Selection on unlinked loci in the genetic background may greatly increase the variance in reproductive value, but the above results nevertheless still hold. The almost linear relationship between survival probability and reproductive value also holds for weakly favored alleles. Thus, the influence of the complex pedigree of descendants on an individual's genetic contribution to the population can be summarized through a single number: its reproductive value.}, author = {Barton, Nicholas H and Etheridge, Alison}, journal = {Genetics}, number = {4}, pages = {953 -- 973}, publisher = {Genetics Society of America}, title = {{The relation between reproductive value and genetic contribution}}, doi = {10.1534/genetics.111.127555}, volume = {188}, year = {2011}, } @article{3391, abstract = {Evolutionary biology shares many concepts with statistical physics: both deal with populations, whether of molecules or organisms, and both seek to simplify evolution in very many dimensions. Often, methodologies have undergone parallel and independent development, as with stochastic methods in population genetics. Here, we discuss aspects of population genetics that have embraced methods from physics: non-equilibrium statistical mechanics, travelling waves and Monte-Carlo methods, among others, have been used to study polygenic evolution, rates of adaptation and range expansions. These applications indicate that evolutionary biology can further benefit from interactions with other areas of statistical physics; for example, by following the distribution of paths taken by a population through time}, author = {de Vladar, Harold and Barton, Nicholas H}, journal = {Trends in Ecology and Evolution}, number = {8}, pages = {424 -- 432}, publisher = {Cell Press}, title = {{The contribution of statistical physics to evolutionary biology}}, doi = {10.1016/j.tree.2011.04.002}, volume = {26}, year = {2011}, } @article{3397, abstract = {Recent advances in microscopy techniques and biophysical measurements have provided novel insight into the molecular, cellular and biophysical basis of cell adhesion. However, comparably little is known about a core element of cell–cell adhesion—the energy of adhesion at the cell–cell contact. In this review, we discuss approaches to understand the nature and regulation of adhesion energy, and propose strategies to determine adhesion energy between cells in vitro and in vivo.}, author = {Maître, Jean-Léon and Heisenberg, Carl-Philipp J}, journal = {Current Opinion in Cell Biology}, number = {5}, pages = {508 -- 514}, publisher = {Elsevier}, title = {{The role of adhesion energy in controlling cell-cell contacts}}, doi = {10.1016/j.ceb.2011.07.004}, volume = {23}, year = {2011}, } @article{3405, abstract = {Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system and gates non-selective cation channels. The origins of glutamate receptors are not well understood as they differ structurally and functionally from simple bacterial ligand-gated ion channels. Here we report the discovery of an ionotropic glutamate receptor that combines the typical eukaryotic domain architecture with the 'TXVGYG' signature sequence of the selectivity filter found in K+ channels. This receptor exhibits functional properties intermediate between bacterial and eukaryotic glutamate-gated ion channels, suggesting a link in the evolution of ionotropic glutamate receptors.}, author = {Janovjak, Harald L and Sandoz, Guillaume and Isacoff, Ehud}, journal = {Nature Communications}, number = {232}, pages = {1 -- 6}, publisher = {Nature Publishing Group}, title = {{Modern ionotropic glutamate receptor with a K+ selectivity signature sequence}}, doi = {10.1038/ncomms1231}, volume = {2}, year = {2011}, } @article{341, abstract = {An oriented attachment and growth mechanism allows an accurate control of the size and morphology of Cu2-xS nanocrystals, from spheres and disks to tetradecahedrons and dodecahedrons. The synthesis conditions and the growth mechanism are detailed here.}, author = {Li, Wenhua and Shavel, Alexey and Guzman, Roger and Rubio Garcia, Javier and Flox, Cristina and Fan, Jiandong and Cadavid, Doris and Ibáñez, Maria and Arbiol, Jordi and Morante, Joan and Cabot, Andreu}, journal = {Chemical Communications}, number = {37}, pages = {10332 -- 10334}, publisher = {Royal Society of Chemistry (RSC) }, title = {{Morphology evolution of Cu2−xS nanoparticles: from spheres to dodecahedrons}}, doi = {10.1039/c1cc13803k}, volume = {47}, year = {2011}, } @article{3429, abstract = {Transcription factors are central to sustaining pluripotency, yet little is known about transcription factor dynamics in defining pluripotency in the early mammalian embryo. Here, we establish a fluorescence decay after photoactivation (FDAP) assay to quantitatively study the kinetic behaviour of Oct4, a key transcription factor controlling pre-implantation development in the mouse embryo. FDAP measurements reveal that each cell in a developing embryo shows one of two distinct Oct4 kinetics, before there are any morphologically distinguishable differences or outward signs of lineage patterning. The differences revealed by FDAP are due to differences in the accessibility of Oct4 to its DNA binding sites in the nucleus. Lineage tracing of the cells in the two distinct sub-populations demonstrates that the Oct4 kinetics predict lineages of the early embryo. Cells with slower Oct4 kinetics are more likely to give rise to the pluripotent cell lineage that contributes to the inner cell mass. Those with faster Oct4 kinetics contribute mostly to the extra-embryonic lineage. Our findings identify Oct4 kinetics, rather than differences in total transcription factor expression levels, as a predictive measure of developmental cell lineage patterning in the early mouse embryo.}, author = {Plachta, Nicolas and Bollenbach, Mark Tobias and Pease, Shirley and Fraser, Scott and Pantazis, Periklis}, journal = {Nature Cell Biology}, number = {2}, pages = {117 -- 123}, publisher = {Nature Publishing Group}, title = {{Oct4 kinetics predict cell lineage patterning in the early mammalian embryo}}, doi = {10.1038/ncb2154}, volume = {13}, year = {2011}, } @article{3505, abstract = {Cell migration on two-dimensional (2D) substrates follows entirely different rules than cell migration in three-dimensional (3D) environments. This is especially relevant for leukocytes that are able to migrate in the absence of adhesion receptors within the confined geometry of artificial 3D extracellular matrix scaffolds and within the interstitial space in vivo. Here, we describe in detail a simple and economical protocol to visualize dendritic cell migration in 3D collagen scaffolds along chemotactic gradients. This method can be adapted to other cell types and may serve as a physiologically relevant paradigm for the directed locomotion of most amoeboid cells.}, author = {Sixt, Michael K and Lämmermann, Tim}, journal = {Cell Migration}, pages = {149 -- 165}, publisher = {Springer}, title = {{In vitro analysis of chemotactic leukocyte migration in 3D environments}}, doi = {10.1007/978-1-61779-207-6_11}, volume = {769}, year = {2011}, } @article{3784, abstract = {Advanced stages of Scyllarus phyllosoma larvae were collected by demersal trawling during fishery research surveys in the western Mediterranean Sea in 2003–2005. Nucleotide sequence analysis of the mitochondrial 16S rDNA gene allowed the final-stage phyllosoma of Scyllarus arctus to be identified among these larvae. Its morphology is described and illustrated. This constitutes the second complete description of a Scyllaridae phyllosoma with its specific identity being validated by molecular techniques (the first was S. pygmaeus). These results also solved a long lasting taxonomic anomaly of several species assigned to the ancient genus Phyllosoma Leach, 1814. Detailed examination indicated that the final-stage phyllosoma of S. arctus shows closer affinities with the American scyllarid Scyllarus depressus or with the Australian Scyllarus sp. b (sensu Phillips et al., 1981) than to its sympatric species S. pygmaeus.}, author = {Palero, Ferran and Guerao, Guillermo and Clark, Paul and Abello, Pere}, journal = {Journal of the Marine Biological Association of the United Kingdom}, number = {2}, pages = {485 -- 492}, publisher = {Cambridge University Press}, title = {{Scyllarus arctus (Crustacea: Decapoda: Scyllaridae) final stage phyllosoma identified by DNA analysis, with morphological description}}, doi = {10.1017/S0025315410000287}, volume = {91}, year = {2011}, } @article{3781, abstract = {We bound the difference in length of two curves in terms of their total curvatures and the Fréchet distance. The bound is independent of the dimension of the ambient Euclidean space, it improves upon a bound by Cohen-Steiner and Edelsbrunner, and it generalizes a result by Fáry and Chakerian.}, author = {Fasy, Brittany Terese}, journal = {Acta Sci. Math. (Szeged)}, number = {1-2}, pages = {359 -- 367}, publisher = {Szegedi Tudományegyetem}, title = {{The difference in length of curves in R^n}}, volume = {77}, year = {2011}, } @inbook{3796, abstract = {We address the problem of covering ℝ n with congruent balls, while minimizing the number of balls that contain an average point. Considering the 1-parameter family of lattices defined by stretching or compressing the integer grid in diagonal direction, we give a closed formula for the covering density that depends on the distortion parameter. We observe that our family contains the thinnest lattice coverings in dimensions 2 to 5. We also consider the problem of packing congruent balls in ℝ n , for which we give a closed formula for the packing density as well. Again we observe that our family contains optimal configurations, this time densest packings in dimensions 2 and 3.}, author = {Edelsbrunner, Herbert and Kerber, Michael}, booktitle = {Rainbow of Computer Science}, editor = {Calude, Cristian and Rozenberg, Grzegorz and Salomaa, Arto}, pages = {20 -- 35}, publisher = {Springer}, title = {{Covering and packing with spheres by diagonal distortion in R^n}}, doi = {10.1007/978-3-642-19391-0_2}, volume = {6570}, year = {2011}, } @article{3381, abstract = {In this survey, we compare several languages for specifying Markovian population models such as queuing networks and chemical reaction networks. All these languages — matrix descriptions, stochastic Petri nets, stoichiometric equations, stochastic process algebras, and guarded command models — describe continuous-time Markov chains, but they differ according to important properties, such as compositionality, expressiveness and succinctness, executability, and ease of use. Moreover, they provide different support for checking the well-formedness of a model and for analyzing a model.}, author = {Henzinger, Thomas A and Jobstmann, Barbara and Wolf, Verena}, journal = {IJFCS: International Journal of Foundations of Computer Science}, number = {4}, pages = {823 -- 841}, publisher = {World Scientific Publishing}, title = {{Formalisms for specifying Markovian population models}}, doi = {10.1142/S0129054111008441}, volume = {22}, year = {2011}, } @article{386, abstract = {We present a detailed study of the local density of states (LDOS) associated with the surface-state band near a step edge of the strong topological insulator Bi2Te3 and reveal a one-dimensional bound state that runs parallel to the step edge and is bound to it at some characteristic distance. This bound state is clearly observed in the bulk gap region, while it becomes entangled with the oscillations of the warped surface band at high energy, and with the valence-band states near the Dirac point. We obtain excellent fits to theoretical predictions [Alpichshev, 2011] that properly incorporate the three-dimensional nature of the problem to the surface state. Fitting the data at different energies, we can recalculate the LDOS originating from the Dirac band without the contribution of the bulk bands or incoherent tunneling effects. }, author = {Alpichshev, Zhanybek and Analytis, J G and Chu, J H and Fisher, I R and Kapitulnik, A}, journal = {Physical Review B - Condensed Matter and Materials Physics}, number = {4}, publisher = {American Physical Society}, title = {{STM imaging of a bound state along a step on the surface of the topological insulator Bi2Te3}}, doi = {10.1103/PhysRevB.84.041104}, volume = {84}, year = {2011}, } @article{3315, abstract = {We consider two-player games played in real time on game structures with clocks where the objectives of players are described using parity conditions. The games are concurrent in that at each turn, both players independently propose a time delay and an action, and the action with the shorter delay is chosen. To prevent a player from winning by blocking time, we restrict each player to play strategies that ensure that the player cannot be responsible for causing a zeno run. First, we present an efficient reduction of these games to turn-based (i.e., not concurrent) finite-state (i.e., untimed) parity games. Our reduction improves the best known complexity for solving timed parity games. Moreover, the rich class of algorithms for classical parity games can now be applied to timed parity games. The states of the resulting game are based on clock regions of the original game, and the state space of the finite game is linear in the size of the region graph. Second, we consider two restricted classes of strategies for the player that represents the controller in a real-time synthesis problem, namely, limit-robust and bounded-robust winning strategies. Using a limit-robust winning strategy, the controller cannot choose an exact real-valued time delay but must allow for some nonzero jitter in each of its actions. If there is a given lower bound on the jitter, then the strategy is bounded-robust winning. We show that exact strategies are more powerful than limit-robust strategies, which are more powerful than bounded-robust winning strategies for any bound. For both kinds of robust strategies, we present efficient reductions to standard timed automaton games. These reductions provide algorithms for the synthesis of robust real-time controllers.}, author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Prabhu, Vinayak}, journal = {Logical Methods in Computer Science}, number = {4}, publisher = {International Federation of Computational Logic}, title = {{Timed parity games: Complexity and robustness}}, doi = {10.2168/LMCS-7(4:8)2011}, volume = {7}, year = {2011}, } @article{3965, abstract = {The elevation function on a smoothly embedded 2-manifold in R-3 reflects the multiscale topography of cavities and protrusions as local maxima. The function has been useful in identifying coarse docking configurations for protein pairs. Transporting the concept from the smooth to the piecewise linear category, this paper describes an algorithm for finding all local maxima. While its worst-case running time is the same as of the algorithm used in prior work, its performance in practice is orders of magnitudes superior. We cast light on this improvement by relating the running time to the total absolute Gaussian curvature of the 2-manifold.}, author = {Wang, Bei and Edelsbrunner, Herbert and Morozov, Dmitriy}, journal = {Journal of Experimental Algorithmics}, number = {2.2}, pages = {1 -- 13}, publisher = {ACM}, title = {{Computing elevation maxima by searching the Gauss sphere}}, doi = {10.1145/1963190.1970375}, volume = {16}, year = {2011}, } @article{3086, abstract = {PIN-FORMED (PIN)-dependent auxin transport is essential for plant development and its modulation in response to the environment or endogenous signals. A NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3)-like protein, MACCHI-BOU 4 (MAB4), has been shown to control PIN1 localization during organ formation, but its contribution is limited. The Arabidopsis genome contains four genes, MAB4/ENP/NPY1-LIKE1 (MEL1), MEL2, MEL3 and MEL4, highly homologous to MAB4. Genetic analysis disclosed functional redundancy between MAB4 and MEL genes in regulation of not only organ formation but also of root gravitropism, revealing that NPH3 family proteins have a wider range of functions than previously suspected. Multiple mutants showed severe reduction in PIN abundance and PIN polar localization, leading to defective expression of an auxin responsive marker DR5rev::GFP. Pharmacological analyses and fluorescence recovery after photo-bleaching experiments showed that mel mutations increase PIN2 internalization from the plasma membrane, but affect neither intracellular PIN2 trafficking nor PIN2 lateral diffusion at the plasma membrane. Notably, all MAB4 subfamily proteins show polar localization at the cell periphery in plants. The MAB4 polarity was almost identical to PIN polarity. Our results suggest that the MAB4 subfamily proteins specifically retain PIN proteins in a polarized manner at the plasma membrane, thus controlling directional auxin transport and plant development.}, author = {Furutani, Masahiko and Sakamoto, Norihito and Yoshida, Shuhei and Kajiwara, Takahito and Robert, Hélène S and Jirí Friml and Tasaka, Masao}, journal = {Development}, number = {10}, pages = {2069 -- 2078}, publisher = {Company of Biologists}, title = {{Polar localized NPH3-like proteins regulate polarity and endocytosis of PIN-FORMED auxin efflux carriers}}, doi = {10.1242/dev.057745}, volume = {138}, year = {2011}, }