@article{11540,
abstract = {Observations have revealed that the star formation rate (SFR) and stellar mass (Mstar) of star-forming galaxies follow a tight relation known as the galaxy main sequence. However, what physical information is encoded in this relation is under debate. Here, we use the EAGLE cosmological hydrodynamical simulation to study the mass dependence, evolution, and origin of scatter in the SFR–Mstar relation. At z = 0, we find that the scatter decreases slightly with stellar mass from 0.35 dex at Mstar ≈ 109 M⊙ to 0.30 dex at Mstar ≳ 1010.5 M⊙. The scatter decreases from z = 0 to z = 5 by 0.05 dex at Mstar ≳ 1010 M⊙ and by 0.15 dex for lower masses. We show that the scatter at z = 0.1 originates from a combination of fluctuations on short time-scales (ranging from 0.2–2 Gyr) that are presumably associated with self-regulation from cooling, star formation, and outflows, but is dominated by long time-scale (∼10 Gyr) variations related to differences in halo formation times. Shorter time-scale fluctuations are relatively more important for lower mass galaxies. At high masses, differences in black hole formation efficiency cause additional scatter, but also diminish the scatter caused by different halo formation times. While individual galaxies cross the main sequence multiple times during their evolution, they fluctuate around tracks associated with their halo properties, i.e. galaxies above/below the main sequence at z = 0.1 tend to have been above/below the main sequence for ≫1 Gyr.},
author = {Matthee, Jorryt J and Schaye, Joop},
issn = {1365-2966},
journal = {Monthly Notices of the Royal Astronomical Society},
keywords = {Space and Planetary Science, Astronomy and Astrophysics : galaxies: evolution, galaxies: formation, galaxies: star formation, cosmology: theory},
number = {1},
pages = {915--932},
publisher = {Oxford University Press},
title = {{The origin of scatter in the star formation rate–stellar mass relation}},
doi = {10.1093/mnras/stz030},
volume = {484},
year = {2019},
}
@article{11616,
abstract = {We present the discovery of HD 221416 b, the first transiting planet identified by the Transiting Exoplanet Survey Satellite (TESS) for which asteroseismology of the host star is possible. HD 221416 b (HIP 116158, TOI-197) is a bright (V = 8.2 mag), spectroscopically classified subgiant that oscillates with an average frequency of about 430 μHz and displays a clear signature of mixed modes. The oscillation amplitude confirms that the redder TESS bandpass compared to Kepler has a small effect on the oscillations, supporting the expected yield of thousands of solar-like oscillators with TESS 2 minute cadence observations. Asteroseismic modeling yields a robust determination of the host star radius (R⋆ = 2.943 ± 0.064 R⊙), mass (M⋆ = 1.212 ± 0.074 M⊙), and age (4.9 ± 1.1 Gyr), and demonstrates that it has just started ascending the red-giant branch. Combining asteroseismology with transit modeling and radial-velocity observations, we show that the planet is a "hot Saturn" (Rp = 9.17 ± 0.33 R⊕) with an orbital period of ∼14.3 days, irradiance of F = 343 ± 24 F⊕, and moderate mass (Mp = 60.5 ± 5.7 M⊕) and density (ρp = 0.431 ± 0.062 g cm−3). The properties of HD 221416 b show that the host-star metallicity–planet mass correlation found in sub-Saturns (4–8 R⊕) does not extend to larger radii, indicating that planets in the transition between sub-Saturns and Jupiters follow a relatively narrow range of densities. With a density measured to ∼15%, HD 221416 b is one of the best characterized Saturn-size planets to date, augmenting the small number of known transiting planets around evolved stars and demonstrating the power of TESS to characterize exoplanets and their host stars using asteroseismology.},
author = {Huber, Daniel and Chaplin, William J. and Chontos, Ashley and Kjeldsen, Hans and Christensen-Dalsgaard, Jørgen and Bedding, Timothy R. and Ball, Warrick and Brahm, Rafael and Espinoza, Nestor and Henning, Thomas and Jordán, Andrés and Sarkis, Paula and Knudstrup, Emil and Albrecht, Simon and Grundahl, Frank and Andersen, Mads Fredslund and Pallé, Pere L. and Crossfield, Ian and Fulton, Benjamin and Howard, Andrew W. and Isaacson, Howard T. and Weiss, Lauren M. and Handberg, Rasmus and Lund, Mikkel N. and Serenelli, Aldo M. and Rørsted Mosumgaard, Jakob and Stokholm, Amalie and Bieryla, Allyson and Buchhave, Lars A. and Latham, David W. and Quinn, Samuel N. and Gaidos, Eric and Hirano, Teruyuki and Ricker, George R. and Vanderspek, Roland K. and Seager, Sara and Jenkins, Jon M. and Winn, Joshua N. and Antia, H. M. and Appourchaux, Thierry and Basu, Sarbani and Bell, Keaton J. and Benomar, Othman and Bonanno, Alfio and Buzasi, Derek L. and Campante, Tiago L. and Çelik Orhan, Z. and Corsaro, Enrico and Cunha, Margarida S. and Davies, Guy R. and Deheuvels, Sebastien and Grunblatt, Samuel K. and Hasanzadeh, Amir and Di Mauro, Maria Pia and A. García, Rafael and Gaulme, Patrick and Girardi, Léo and Guzik, Joyce A. and Hon, Marc and Jiang, Chen and Kallinger, Thomas and Kawaler, Steven D. and Kuszlewicz, James S. and Lebreton, Yveline and Li, Tanda and Lucas, Miles and Lundkvist, Mia S. and Mann, Andrew W. and Mathis, Stéphane and Mathur, Savita and Mazumdar, Anwesh and Metcalfe, Travis S. and Miglio, Andrea and F. G. Monteiro, Mário J. P. and Mosser, Benoit and Noll, Anthony and Nsamba, Benard and Joel Ong, Jia Mian and Örtel, S. and Pereira, Filipe and Ranadive, Pritesh and Régulo, Clara and Rodrigues, Thaíse S. and Roxburgh, Ian W. and Aguirre, Victor Silva and Smalley, Barry and Schofield, Mathew and Sousa, Sérgio G. and Stassun, Keivan G. and Stello, Dennis and Tayar, Jamie and White, Timothy R. and Verma, Kuldeep and Vrard, Mathieu and Yıldız, M. and Baker, David and Bazot, Michaël and Beichmann, Charles and Bergmann, Christoph and Bugnet, Lisa Annabelle and Cale, Bryson and Carlino, Roberto and Cartwright, Scott M. and Christiansen, Jessie L. and Ciardi, David R. and Creevey, Orlagh and Dittmann, Jason A. and Nascimento, Jose-Dias Do and Eylen, Vincent Van and Fürész, Gabor and Gagné, Jonathan and Gao, Peter and Gazeas, Kosmas and Giddens, Frank and Hall, Oliver J. and Hekker, Saskia and Ireland, Michael J. and Latouf, Natasha and LeBrun, Danny and Levine, Alan M. and Matzko, William and Natinsky, Eva and Page, Emma and Plavchan, Peter and Mansouri-Samani, Masoud and McCauliff, Sean and Mullally, Susan E. and Orenstein, Brendan and Soto, Aylin Garcia and Paegert, Martin and van Saders, Jennifer L. and Schnaible, Chloe and Soderblom, David R. and Szabó, Róbert and Tanner, Angelle and Tinney, C. G. and Teske, Johanna and Thomas, Alexandra and Trampedach, Regner and Wright, Duncan and Yuan, Thomas T. and Zohrabi, Farzaneh},
issn = {0004-6256},
journal = {The Astronomical Journal},
keywords = {Space and Planetary Science, Astronomy and Astrophysics},
number = {6},
publisher = {IOP Publishing},
title = {{A hot Saturn orbiting an oscillating late subgiant discovered by TESS}},
doi = {10.3847/1538-3881/ab1488},
volume = {157},
year = {2019},
}
@article{11613,
abstract = {Over 2,000 stars were observed for 1 month with a high enough cadence in order to look for acoustic modes during the survey phase of the Kepler mission. Solar-like oscillations have been detected in about 540 stars. The question of why no oscillations were detected in the remaining stars is still open. Previous works explained the non-detection of modes with the high level of magnetic activity of the stars. However, the sample of stars studied contained some classical pulsators and red giants that could have biased the results. In this work, we revisit this analysis on a cleaner sample of main-sequence solar-like stars that consists of 1,014 stars. First we compute the predicted amplitude of the modes of that sample and for the stars with detected oscillation and compare it to the noise at high frequency in the power spectrum. We find that the stars with detected modes have an amplitude to noise ratio larger than 0.94. We measure reliable rotation periods and the associated photometric magnetic index for 684 stars out of the full sample and in particular for 323 stars where the amplitude of the modes is predicted to be high enough to be detected. We find that among these 323 stars 32% of them have a level of magnetic activity larger than the Sun during its maximum activity, explaining the non-detection of acoustic modes. Interestingly, magnetic activity cannot be the primary reason responsible for the absence of detectable modes in the remaining 68% of the stars without acoustic modes detected and with reliable rotation periods. Thus, we investigate metallicity, inclination angle of the rotation axis, and binarity as possible causes of low mode amplitudes. Using spectroscopic observations for a subsample, we find that a low metallicity could be the reason for suppressed modes. No clear correlation with binarity nor inclination is found. We also derive the lower limit for our photometric activity index (of 20–30 ppm) below which rotation and magnetic activity are not detected. Finally, with our analysis we conclude that stars with a photometric activity index larger than 2,000 ppm have 98.3% probability of not having oscillations detected.},
author = {Mathur, Savita and García, Rafael A. and Bugnet, Lisa Annabelle and Santos, Ângela R.G. and Santiago, Netsha and Beck, Paul G.},
issn = {2296-987X},
journal = {Frontiers in Astronomy and Space Sciences},
keywords = {Astronomy and Astrophysics},
publisher = {Frontiers Media},
title = {{Revisiting the impact of stellar magnetic activity on the detectability of solar-like oscillations by Kepler}},
doi = {10.3389/fspas.2019.00046},
volume = {6},
year = {2019},
}
@article{11615,
abstract = {The recently published Kepler mission Data Release 25 (DR25) reported on ∼197 000 targets observed during the mission. Despite this, no wide search for red giants showing solar-like oscillations have been made across all stars observed in Kepler’s long-cadence mode. In this work, we perform this task using custom apertures on the Kepler pixel files and detect oscillations in 21 914 stars, representing the largest sample of solar-like oscillating stars to date. We measure their frequency at maximum power, νmax, down to νmax≃4μHz and obtain log (g) estimates with a typical uncertainty below 0.05 dex, which is superior to typical measurements from spectroscopy. Additionally, the νmax distribution of our detections show good agreement with results from a simulated model of the Milky Way, with a ratio of observed to predicted stars of 0.992 for stars with 10<νmax<270μHz. Among our red giant detections, we find 909 to be dwarf/subgiant stars whose flux signal is polluted by a neighbouring giant as a result of using larger photometric apertures than those used by the NASA Kepler science processing pipeline. We further find that only 293 of the polluting giants are known Kepler targets. The remainder comprises over 600 newly identified oscillating red giants, with many expected to belong to the Galactic halo, serendipitously falling within the Kepler pixel files of targeted stars.},
author = {Hon, Marc and Stello, Dennis and García, Rafael A and Mathur, Savita and Sharma, Sanjib and Colman, Isabel L and Bugnet, Lisa Annabelle},
issn = {1365-2966},
journal = {Monthly Notices of the Royal Astronomical Society},
keywords = {Space and Planetary Science, Astronomy and Astrophysics, asteroseismology, methods: data analysis, techniques: image processing, stars: oscillations, stars: statistics},
number = {4},
pages = {5616--5630},
publisher = {Oxford University Press},
title = {{A search for red giant solar-like oscillations in all Kepler data}},
doi = {10.1093/mnras/stz622},
volume = {485},
year = {2019},
}
@article{11614,
abstract = {The NASA Transiting Exoplanet Survey Satellite (TESS) is about to provide full-frame images of almost the entire sky. The amount of stellar data to be analysed represents hundreds of millions stars, which is several orders of magnitude more than the number of stars observed by the Convection, Rotation and planetary Transits satellite (CoRoT), and NASA Kepler and K2 missions. We aim at automatically classifying the newly observed stars with near real-time algorithms to better guide the subsequent detailed studies. In this paper, we present a classification algorithm built to recognise solar-like pulsators among classical pulsators. This algorithm relies on the global amount of power contained in the power spectral density (PSD), also known as the flicker in spectral power density (FliPer). Because each type of pulsating star has a characteristic background or pulsation pattern, the shape of the PSD at different frequencies can be used to characterise the type of pulsating star. The FliPer classifier (FliPerClass) uses different FliPer parameters along with the effective temperature as input parameters to feed a ML algorithm in order to automatically classify the pulsating stars observed by TESS. Using noisy TESS-simulated data from the TESS Asteroseismic Science Consortium (TASC), we classify pulsators with a 98% accuracy. Among them, solar-like pulsating stars are recognised with a 99% accuracy, which is of great interest for a further seismic analysis of these stars, which are like our Sun. Similar results are obtained when we trained our classifier and applied it to 27-day subsets of real Kepler data. FliPerClass is part of the large TASC classification pipeline developed by the TESS Data for Asteroseismology (T’DA) classification working group.},
author = {Bugnet, Lisa Annabelle and García, R. A. and Mathur, S. and Davies, G. R. and Hall, O. J. and Lund, M. N. and Rendle, B. M.},
issn = {1432-0746},
journal = {Astronomy & Astrophysics},
keywords = {Space and Planetary Science, Astronomy and Astrophysics},
publisher = {EDP Science},
title = {{FliPerClass: In search of solar-like pulsators among TESS targets}},
doi = {10.1051/0004-6361/201834780},
volume = {624},
year = {2019},
}
@article{11623,
abstract = {Brightness variations due to dark spots on the stellar surface encode information about stellar surface rotation and magnetic activity. In this work, we analyze the Kepler long-cadence data of 26,521 main-sequence stars of spectral types M and K in order to measure their surface rotation and photometric activity level. Rotation-period estimates are obtained by the combination of a wavelet analysis and autocorrelation function of the light curves. Reliable rotation estimates are determined by comparing the results from the different rotation diagnostics and four data sets. We also measure the photometric activity proxy Sph using the amplitude of the flux variations on an appropriate timescale. We report rotation periods and photometric activity proxies for about 60% of the sample, including 4431 targets for which McQuillan et al. did not report a rotation period. For the common targets with rotation estimates in this study and in McQuillan et al., our rotation periods agree within 99%. In this work, we also identify potential polluters, such as misclassified red giants and classical pulsator candidates. Within the parameter range we study, there is a mild tendency for hotter stars to have shorter rotation periods. The photometric activity proxy spans a wider range of values with increasing effective temperature. The rotation period and photometric activity proxy are also related, with Sph being larger for fast rotators. Similar to McQuillan et al., we find a bimodal distribution of rotation periods.},
author = {Santos, A. R. G. and García, R. A. and Mathur, S. and Bugnet, Lisa Annabelle and van Saders, J. L. and Metcalfe, T. S. and Simonian, G. V. A. and Pinsonneault, M. H.},
issn = {0067-0049},
journal = {The Astrophysical Journal Supplement Series},
keywords = {Space and Planetary Science, Astronomy and Astrophysics, methods: data analysis, stars: activity, stars: low-mass, stars: rotation, starspots, techniques: photometric},
number = {1},
publisher = {IOP Publishing},
title = {{Surface rotation and photometric activity for Kepler targets. I. M and K main-sequence stars}},
doi = {10.3847/1538-4365/ab3b56},
volume = {244},
year = {2019},
}
@unpublished{11627,
abstract = {For a solar-like star, the surface rotation evolves with time, allowing in principle to estimate the age of a star from its surface rotation period. Here we are interested in measuring surface rotation periods of solar-like stars observed by the NASA mission Kepler. Different methods have been developed to track rotation signals in Kepler photometric light curves: time-frequency analysis based on wavelet techniques, autocorrelation and composite spectrum. We use the learning abilities of random forest classifiers to take decisions during two crucial steps of the analysis. First, given some input parameters, we discriminate the considered Kepler targets between rotating MS stars, non-rotating MS stars, red giants, binaries and pulsators. We then use a second classifier only on the MS rotating targets to decide the best data analysis treatment.},
author = {Breton, S. N. and Bugnet, Lisa Annabelle and Santos, A. R. G. and Saux, A. Le and Mathur, S. and Palle, P. L. and Garcia, R. A.},
booktitle = {arXiv},
keywords = {asteroseismology, rotation, solar-like stars, kepler, machine learning, random forest},
title = {{Determining surface rotation periods of solar-like stars observed by the Kepler mission using machine learning techniques}},
doi = {10.48550/arXiv.1906.09609},
year = {2019},
}
@unpublished{11630,
abstract = {The second mission of NASA’s Kepler satellite, K2, has collected hundreds of thousands of lightcurves for stars close to the ecliptic plane. This new sample could increase the number of known pulsating stars and then improve our understanding of those stars. For the moment only a few stars have been properly classified and published. In this work, we present a method to automaticly classify K2 pulsating stars using a Machine Learning technique called Random Forest. The objective is to sort out the stars in four classes: red giant (RG), main-sequence Solar-like stars (SL), classical pulsators (PULS) and Other. To do this we use the effective temperatures and the luminosities of the stars as well as the FliPer features, that measures the amount of power contained in the power spectral density. The classifier now retrieves the right classification for more than 80% of the stars.},
author = {Saux, A. Le and Bugnet, Lisa Annabelle and Mathur, S. and Breton, S. N. and Garcia, R. A.},
booktitle = {arXiv},
keywords = {asteroseismology - methods, data analysis - thecniques, machine learning - stars, oscillations},
title = {{Automatic classification of K2 pulsating stars using machine learning techniques}},
doi = {10.48550/arXiv.1906.09611},
year = {2019},
}
@inproceedings{11826,
abstract = {The diameter, radius and eccentricities are natural graph parameters. While these problems have been studied extensively, there are no known dynamic algorithms for them beyond the ones that follow from trivial recomputation after each update or from solving dynamic All-Pairs Shortest Paths (APSP), which is very computationally intensive. This is the situation for dynamic approximation algorithms as well, and even if only edge insertions or edge deletions need to be supported.
This paper provides a comprehensive study of the dynamic approximation of Diameter, Radius and Eccentricities, providing both conditional lower bounds, and new algorithms whose bounds are optimal under popular hypotheses in fine-grained complexity. Some of the highlights include:
- Under popular hardness hypotheses, there can be no significantly better fully dynamic approximation algorithms than recomputing the answer after each update, or maintaining full APSP.
- Nearly optimal partially dynamic (incremental/decremental) algorithms can be achieved via efficient reductions to (incremental/decremental) maintenance of Single-Source Shortest Paths. For instance, a nearly (3/2+epsilon)-approximation to Diameter in directed or undirected n-vertex, m-edge graphs can be maintained decrementally in total time m^{1+o(1)}sqrt{n}/epsilon^2. This nearly matches the static 3/2-approximation algorithm for the problem that is known to be conditionally optimal.},
author = {Ancona, Bertie and Henzinger, Monika H and Roditty, Liam and Williams, Virginia Vassilevska and Wein, Nicole},
booktitle = {46th International Colloquium on Automata, Languages, and Programming},
isbn = {978-3-95977-109-2},
issn = {1868-8969},
location = {Patras, Greece},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Algorithms and hardness for diameter in dynamic graphs}},
doi = {10.4230/LIPICS.ICALP.2019.13},
volume = {132},
year = {2019},
}
@inproceedings{11850,
abstract = {Modern networked systems are increasingly reconfigurable, enabling demand-aware infrastructures whose resources can be adjusted according to the workload they currently serve. Such dynamic adjustments can be exploited to improve network utilization and hence performance, by moving frequently interacting communication partners closer, e.g., collocating them in the same server or datacenter. However, dynamically changing the embedding of workloads is algorithmically challenging: communication patterns are often not known ahead of time, but must be learned. During the learning process, overheads related to unnecessary moves (i.e., re-embeddings) should be minimized. This paper studies a fundamental model which captures the tradeoff between the benefits and costs of dynamically collocating communication partners on l servers, in an online manner. Our main contribution is a distributed online algorithm which is asymptotically almost optimal, i.e., almost matches the lower bound (also derived in this paper) on the competitive ratio of any (distributed or centralized) online algorithm.},
author = {Henzinger, Monika H and Neumann, Stefan and Schmid, Stefan},
booktitle = {SIGMETRICS'19: International Conference on Measurement and Modeling of Computer Systems},
isbn = {978-1-4503-6678-6},
location = {Phoenix, AZ, United States},
pages = {43–44},
publisher = {Association for Computing Machinery},
title = {{Efficient distributed workload (re-)embedding}},
doi = {10.1145/3309697.3331503},
year = {2019},
}
@inbook{11847,
abstract = {This paper serves as a user guide to the Vienna graph clustering framework. We review our general memetic algorithm, VieClus, to tackle the graph clustering problem. A key component of our contribution are natural recombine operators that employ ensemble clusterings as well as multi-level techniques. Lastly, we combine these techniques with a scalable communication protocol, producing a system that is able to compute high-quality solutions in a short amount of time. After giving a description of the algorithms employed, we establish the connection of the graph clustering problem to protein–protein interaction networks and moreover give a description on how the software can be used, what file formats are expected, and how this can be used to find functional groups in protein–protein interaction networks.},
author = {Biedermann, Sonja and Henzinger, Monika H and Schulz, Christian and Schuster, Bernhard},
booktitle = {Protein-Protein Interaction Networks},
editor = {Canzar, Stefan and Rojas Ringeling, Francisca},
isbn = {9781493998722},
issn = {1940-6029},
pages = {215–231},
publisher = {Springer Nature},
title = {{Vienna Graph Clustering}},
doi = {10.1007/978-1-4939-9873-9_16},
volume = {2074},
year = {2019},
}
@inproceedings{11853,
abstract = {We present a deterministic dynamic algorithm for maintaining a (1+ε)f-approximate minimum cost set cover with O(f log(Cn)/ε^2) amortized update time, when the input set system is undergoing element insertions and deletions. Here, n denotes the number of elements, each element appears in at most f sets, and the cost of each set lies in the range [1/C, 1]. Our result, together with that of Gupta~et~al.~[STOC'17], implies that there is a deterministic algorithm for this problem with O(f log(Cn)) amortized update time and O(min(log n, f)) -approximation ratio, which nearly matches the polynomial-time hardness of approximation for minimum set cover in the static setting. Our update time is only O(log (Cn)) away from a trivial lower bound. Prior to our work, the previous best approximation ratio guaranteed by deterministic algorithms was O(f^2), which was due to Bhattacharya~et~al.~[ICALP`15]. In contrast, the only result that guaranteed O(f) -approximation was obtained very recently by Abboud~et~al.~[STOC`19], who designed a dynamic algorithm with (1+ε)f-approximation ratio and O(f^2 log n/ε) amortized update time. Besides the extra O(f) factor in the update time compared to our and Gupta~et~al.'s results, the Abboud~et~al.~algorithm is randomized, and works only when the adversary is oblivious and the sets are unweighted (each set has the same cost). We achieve our result via the primal-dual approach, by maintaining a fractional packing solution as a dual certificate. This approach was pursued previously by Bhattacharya~et~al.~and Gupta~et~al., but not in the recent paper by Abboud~et~al. Unlike previous primal-dual algorithms that try to satisfy some local constraints for individual sets at all time, our algorithm basically waits until the dual solution changes significantly globally, and fixes the solution only where the fix is needed.},
author = {Bhattacharya, Sayan and Henzinger, Monika H and Nanongkai, Danupon},
booktitle = {60th Annual Symposium on Foundations of Computer Science},
isbn = {978-1-7281-4953-0},
issn = {2575-8454},
location = {Baltimore, MD, United States},
pages = {406--423},
publisher = {Institute of Electrical and Electronics Engineers},
title = {{A new deterministic algorithm for dynamic set cover}},
doi = {10.1109/focs.2019.00033},
year = {2019},
}
@inproceedings{11851,
abstract = {The minimum cut problem for an undirected edge-weighted graph asks us to divide its set of nodes into two blocks while minimizing the weighted sum of the cut edges. In this paper, we engineer the fastest known exact algorithm for the problem. State-of-the-art algorithms like the algorithm of Padberg and Rinaldi or the algorithm of Nagamochi, Ono and Ibaraki identify edges that can be contracted to reduce the graph size such that at least one minimum cut is maintained in the contracted graph. Our algorithm achieves improvements in running time over these algorithms by a multitude of techniques. First, we use a recently developed fast and parallel inexact minimum cut algorithm to obtain a better bound for the problem. Afterwards, we use reductions that depend on this bound to reduce the size of the graph much faster than previously possible. We use improved data structures to further lower the running time of our algorithm. Additionally, we parallelize the contraction routines of Nagamochi et al. . Overall, we arrive at a system that significantly outperforms the fastest state-of-the-art solvers for the exact minimum cut problem.},
author = {Henzinger, Monika H and Noe, Alexander and Schulz, Christian},
booktitle = {33rd International Parallel and Distributed Processing Symposium},
isbn = {978-1-7281-1247-3},
issn = {1530-2075},
location = {Rio de Janeiro, Brazil},
publisher = {Institute of Electrical and Electronics Engineers},
title = {{Shared-memory exact minimum cuts}},
doi = {10.1109/ipdps.2019.00013},
year = {2019},
}
@inproceedings{11865,
abstract = {We present the first sublinear-time algorithm that can compute the edge connectivity λ of a network exactly on distributed message-passing networks (the CONGEST model), as long as the network contains no multi-edge. We present the first sublinear-time algorithm for a distributed message-passing network sto compute its edge connectivity λ exactly in the CONGEST model, as long as there are no parallel edges. Our algorithm takes Õ(n1−1/353D1/353+n1−1/706) time to compute λ and a cut of cardinality λ with high probability, where n and D are the number of nodes and the diameter of the network, respectively, and Õ hides polylogarithmic factors. This running time is sublinear in n (i.e. Õ(n1−є)) whenever D is. Previous sublinear-time distributed algorithms can solve this problem either (i) exactly only when λ=O(n1/8−є) [Thurimella PODC’95; Pritchard, Thurimella, ACM Trans. Algorithms’11; Nanongkai, Su, DISC’14] or (ii) approximately [Ghaffari, Kuhn, DISC’13; Nanongkai, Su, DISC’14]. To achieve this we develop and combine several new techniques. First, we design the first distributed algorithm that can compute a k-edge connectivity certificate for any k=O(n1−є) in time Õ(√nk+D). The previous sublinear-time algorithm can do so only when k=o(√n) [Thurimella PODC’95]. In fact, our algorithm can be turned into the first parallel algorithm with polylogarithmic depth and near-linear work. Previous near-linear work algorithms are essentially sequential and previous polylogarithmic-depth algorithms require Ω(mk) work in the worst case (e.g. [Karger, Motwani, STOC’93]). Second, we show that by combining the recent distributed expander decomposition technique of [Chang, Pettie, Zhang, SODA’19] with techniques from the sequential deterministic edge connectivity algorithm of [Kawarabayashi, Thorup, STOC’15], we can decompose the network into a sublinear number of clusters with small average diameter and without any mincut separating a cluster (except the “trivial” ones). This leads to a simplification of the Kawarabayashi-Thorup framework (except that we are randomized while they are deterministic). This might make this framework more useful in other models of computation. Finally, by extending the tree packing technique from [Karger STOC’96], we can find the minimum cut in time proportional to the number of components. As a byproduct of this technique, we obtain an Õ(n)-time algorithm for computing exact minimum cut for weighted graphs.},
author = {Daga, Mohit and Henzinger, Monika H and Nanongkai, Danupon and Saranurak, Thatchaphol},
booktitle = {Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing},
isbn = {978-1-4503-6705-9},
issn = {0737-8017},
location = {Phoenix, AZ, United States},
pages = {343–354},
publisher = {Association for Computing Machinery},
title = {{Distributed edge connectivity in sublinear time}},
doi = {10.1145/3313276.3316346},
year = {2019},
}
@inproceedings{11871,
abstract = {Many dynamic graph algorithms have an amortized update time, rather than a stronger worst-case guarantee. But amortized data structures are not suitable for real-time systems, where each individual operation has to be executed quickly. For this reason, there exist many recent randomized results that aim to provide a guarantee stronger than amortized expected. The strongest possible guarantee for a randomized algorithm is that it is always correct (Las Vegas), and has high-probability worst-case update time, which gives a bound on the time for each individual operation that holds with high probability.
In this paper we present the first polylogarithmic high-probability worst-case time bounds for the dynamic spanner and the dynamic maximal matching problem.
1.
For dynamic spanner, the only known o(n) worst-case bounds were O(n3/4) high-probability worst-case update time for maintaining a 3-spanner, and O(n5/9) for maintaining a 5-spanner. We give a O(1)k log3(n) high-probability worst-case time bound for maintaining a (2k – 1)-spanner, which yields the first worst-case polylog update time for all constant k. (All the results above maintain the optimal tradeoff of stretch 2k – 1 and Õ(n1+1/k) edges.)
2.
For dynamic maximal matching, or dynamic 2-approximate maximum matching, no algorithm with o(n) worst-case time bound was known and we present an algorithm with O(log5 (n)) high-probability worst-case time; similar worst-case bounds existed only for maintaining a matching that was (2 + ∊)-approximate, and hence not maximal.
Our results are achieved using a new approach for converting amortized guarantees to worst-case ones for randomized data structures by going through a third type of guarantee, which is a middle ground between the two above: an algorithm is said to have worst-case expected update time α if for every update σ, the expected time to process σ is at most α. Although stronger than amortized expected, the worst-case expected guarantee does not resolve the fundamental problem of amortization: a worst-case expected update time of O(1) still allows for the possibility that every 1/f(n) updates requires Θ(f(n)) time to process, for arbitrarily high f(n). In this paper we present a black-box reduction that converts any data structure with worst-case expected update time into one with a high-probability worst-case update time: the query time remains the same, while the update time increases by a factor of O(log2(n)).
Thus we achieve our results in two steps: (1) First we show how to convert existing dynamic graph algorithms with amortized expected polylogarithmic running times into algorithms with worst-case expected polylogarithmic running times. (2) Then we use our black-box reduction to achieve the polylogarithmic high-probability worst-case time bound. All our algorithms are Las-Vegas-type algorithms.},
author = {Bernstein, Aaron and Forster, Sebastian and Henzinger, Monika H},
booktitle = {30th Annual ACM-SIAM Symposium on Discrete Algorithms},
location = {San Diego, CA, United States},
pages = {1899--1918},
publisher = {Society for Industrial and Applied Mathematics},
title = {{A deamortization approach for dynamic spanner and dynamic maximal matching}},
doi = {10.1137/1.9781611975482.115},
year = {2019},
}
@article{11898,
abstract = {We build upon the recent papers by Weinstein and Yu (FOCS'16), Larsen (FOCS'12), and Clifford et al. (FOCS'15) to present a general framework that gives amortized lower bounds on the update and query times of dynamic data structures. Using our framework, we present two concrete results.
(1) For the dynamic polynomial evaluation problem, where the polynomial is defined over a finite field of size n1+Ω(1) and has degree n, any dynamic data structure must either have an amortized update time of Ω((lgn/lglgn)2) or an amortized query time of Ω((lgn/lglgn)2).
(2) For the dynamic online matrix vector multiplication problem, where we get an n×n matrix whose entires are drawn from a finite field of size nΘ(1), any dynamic data structure must either have an amortized update time of Ω((lgn/lglgn)2) or an amortized query time of Ω(n⋅(lgn/lglgn)2).
For these two problems, the previous works by Larsen (FOCS'12) and Clifford et al. (FOCS'15) gave the same lower bounds, but only for worst case update and query times. Our bounds match the highest unconditional lower bounds known till date for any dynamic problem in the cell-probe model.},
author = {Bhattacharya, Sayan and Henzinger, Monika H and Neumann, Stefan},
issn = {0304-3975},
journal = {Theoretical Computer Science},
pages = {72--87},
publisher = {Elsevier},
title = {{New amortized cell-probe lower bounds for dynamic problems}},
doi = {10.1016/j.tcs.2019.01.043},
volume = {779},
year = {2019},
}
@article{11957,
abstract = {Cross-coupling reactions mediated by dual nickel/photocatalysis are synthetically attractive but rely mainly on expensive, non-recyclable noble-metal complexes as photocatalysts. Heterogeneous semiconductors, which are commonly used for artificial photosynthesis and wastewater treatment, are a sustainable alternative. Graphitic carbon nitrides, a class of metal-free polymers that can be easily prepared from bulk chemicals, are heterogeneous semiconductors with high potential for photocatalytic organic transformations. Here, we demonstrate that graphitic carbon nitrides in combination with nickel catalysis can induce selective C−O cross-couplings of carboxylic acids with aryl halides, yielding the respective aryl esters in excellent yield and selectivity. The heterogeneous organic photocatalyst exhibits a broad substrate scope, is able to harvest green light, and can be recycled multiple times. In situ FTIR was used to track the reaction progress to study this transformation at different irradiation wavelengths and reaction scales.},
author = {Pieber, Bartholomäus and Malik, Jamal A. and Cavedon, Cristian and Gisbertz, Sebastian and Savateev, Aleksandr and Cruz, Daniel and Heil, Tobias and Zhang, Guigang and Seeberger, Peter H.},
issn = {1521-3773},
journal = {Angewandte Chemie International Edition},
number = {28},
pages = {9575--9580},
publisher = {Wiley},
title = {{Semi‐heterogeneous dual nickel/photocatalysis using carbon nitrides: Esterification of carboxylic acids with aryl halides}},
doi = {10.1002/anie.201902785},
volume = {58},
year = {2019},
}
@article{11984,
abstract = {Differentially protected galactosamine building blocks are key components for the synthesis of human and bacterial oligosaccharides. The azidophenylselenylation of 3,4,6-tri-O-acetyl-d-galactal provides straightforward access to the corresponding 2-nitrogenated glycoside. Poor reproducibility and the use of azides that lead to the formation of potentially explosive and toxic species limit the scalability of this reaction and render it a bottleneck for carbohydrate synthesis. Here, we present a method for the safe, efficient, and reliable azidophenylselenylation of 3,4,6-tri-O-acetyl-d-galactal at room temperature, using continuous flow chemistry. Careful analysis of the transformation resulted in reaction conditions that produce minimal side products while the reaction time was reduced drastically when compared to batch reactions. The flow setup is readily scalable to process 5 mmol of galactal in 3 h, producing 1.2 mmol/h of product.},
author = {Guberman, Mónica and Pieber, Bartholomäus and Seeberger, Peter H.},
issn = {1520-586X},
journal = {Organic Process Research and Development},
number = {12},
pages = {2764--2770},
publisher = {American Chemical Society},
title = {{Safe and scalable continuous flow azidophenylselenylation of galactal to prepare galactosamine building blocks}},
doi = {10.1021/acs.oprd.9b00456},
volume = {23},
year = {2019},
}
@article{11982,
abstract = {A carbon nitride material can be combined with homogeneous nickel catalysts for light-mediated cross-couplings of aryl bromides with alcohols under mild conditions. The metal-free heterogeneous semiconductor is fully recyclable and couples a broad range of electron-poor aryl bromides with primary and secondary alcohols as well as water. The application for intramolecular reactions and the synthesis of active pharmaceutical ingredients was demonstrated. The catalytic protocol is applicable for the coupling of aryl iodides with thiols as well.},
author = {Cavedon, Cristian and Madani, Amiera and Seeberger, Peter H. and Pieber, Bartholomäus},
issn = {1523-7052},
journal = {Organic Letters},
number = {13},
pages = {5331--5334},
publisher = {American Chemical Society},
title = {{Semiheterogeneous dual nickel/photocatalytic (thio)etherification using carbon nitrides}},
doi = {10.1021/acs.orglett.9b01957},
volume = {21},
year = {2019},
}
@article{170,
abstract = {Upper and lower bounds, of the expected order of magnitude, are obtained for the number of rational points of bounded height on any quartic del Pezzo surface over ℚ that contains a conic defined over ℚ .},
author = {Browning, Timothy D and Sofos, Efthymios},
journal = {Mathematische Annalen},
number = {3-4},
pages = {977--1016},
publisher = {Springer Nature},
title = {{Counting rational points on quartic del Pezzo surfaces with a rational conic}},
doi = {10.1007/s00208-018-1716-6},
volume = {373},
year = {2019},
}
@article{441,
author = {Kalinin, Nikita and Shkolnikov, Mikhail},
issn = {2199-6768},
journal = {European Journal of Mathematics},
number = {3},
pages = {909–928},
publisher = {Springer Nature},
title = {{Tropical formulae for summation over a part of SL(2,Z)}},
doi = {10.1007/s40879-018-0218-0},
volume = {5},
year = {2019},
}
@inbook{5793,
abstract = {The transcription coactivator, Yes-associated protein (YAP), which is a nuclear effector of the Hippo signaling pathway, has been shown to be a mechano-transducer. By using mutant fish and human 3D spheroids, we have recently demonstrated that YAP is also a mechano-effector. YAP functions in three-dimensional (3D) morphogenesis of organ and global body shape by controlling actomyosin-mediated tissue tension. In this chapter, we present a platform that links the findings in fish embryos with human cells. The protocols for analyzing tissue tension-mediated global body shape/organ morphogenesis in vivo and ex vivo using medaka fish embryos and in vitro using human cell spheroids represent useful tools for unraveling the molecular mechanisms by which YAP functions in regulating global body/organ morphogenesis.},
author = {Asaoka, Yoichi and Morita, Hitoshi and Furumoto, Hiroko and Heisenberg, Carl-Philipp J and Furutani-Seiki, Makoto},
booktitle = {The hippo pathway},
editor = {Hergovich, Alexander},
isbn = {978-1-4939-8909-6},
pages = {167--181},
publisher = {Springer},
title = {{Studying YAP-mediated 3D morphogenesis using fish embryos and human spheroids}},
doi = {10.1007/978-1-4939-8910-2_14},
volume = {1893},
year = {2019},
}
@article{5887,
abstract = {Cryptographic security is usually defined as a guarantee that holds except when a bad event with negligible probability occurs, and nothing is guaranteed in that bad case. However, in settings where such failure can happen with substantial probability, one needs to provide guarantees even for the bad case. A typical example is where a (possibly weak) password is used instead of a secure cryptographic key to protect a session, the bad event being that the adversary correctly guesses the password. In a situation with multiple such sessions, a per-session guarantee is desired: any session for which the password has not been guessed remains secure, independently of whether other sessions have been compromised. A new formalism for stating such gracefully degrading security guarantees is introduced and applied to analyze the examples of password-based message authentication and password-based encryption. While a natural per-message guarantee is achieved for authentication, the situation of password-based encryption is more delicate: a per-session confidentiality guarantee only holds against attackers for which the distribution of password-guessing effort over the sessions is known in advance. In contrast, for more general attackers without such a restriction, a strong, composable notion of security cannot be achieved.},
author = {Demay, Gregory and Gazi, Peter and Maurer, Ueli and Tackmann, Bjorn},
issn = {0926227X},
journal = {Journal of Computer Security},
number = {1},
pages = {75--111},
publisher = {IOS Press},
title = {{Per-session security: Password-based cryptography revisited}},
doi = {10.3233/JCS-181131},
volume = {27},
year = {2019},
}
@inproceedings{6163,
abstract = {We propose a new non-orthogonal basis to express the 3D Euclidean space in terms of a regular grid. Every grid point, each represented by integer 3-coordinates, corresponds to rhombic dodecahedron centroid. Rhombic dodecahedron is a space filling polyhedron which represents the close packing of spheres in 3D space and the Voronoi structures of the face centered cubic (FCC) lattice. In order to illustrate the interest of the new coordinate system, we propose the characterization of 3D digital plane with its topological features, such as the interrelation between the thickness of the digital plane and the separability constraint we aim to obtain. A characterization of a 3D digital sphere with relevant topological features is proposed as well with the help of a 48 symmetry that comes with the new coordinate system.},
author = {Biswas, Ranita and Largeteau-Skapin, Gaëlle and Zrour, Rita and Andres, Eric},
booktitle = {21st IAPR International Conference on Discrete Geometry for Computer Imagery},
isbn = {978-3-6624-6446-5},
issn = {0302-9743},
location = {Marne-la-Vallée, France},
pages = {27--37},
publisher = {Springer Berlin Heidelberg},
title = {{Rhombic dodecahedron grid—coordinate system and 3D digital object definitions}},
doi = {10.1007/978-3-030-14085-4_3},
volume = {11414},
year = {2019},
}
@article{6515,
abstract = {We give non-degeneracy criteria for Riemannian simplices based on simplices in spaces of constant sectional curvature. It extends previous work on Riemannian simplices, where we developed Riemannian simplices with respect to Euclidean reference simplices. The criteria we give in this article are in terms of quality measures for spaces of constant curvature that we develop here. We see that simplices in spaces that have nearly constant curvature, are already non-degenerate under very weak quality demands. This is of importance because it allows for sampling of Riemannian manifolds based on anisotropy of the manifold and not (absolute) curvature.},
author = {Dyer, Ramsay and Vegter, Gert and Wintraecken, Mathijs},
issn = {1920-180X},
journal = {Journal of Computational Geometry },
number = {1},
pages = {223–256},
publisher = {Carleton University},
title = {{Simplices modelled on spaces of constant curvature}},
doi = {10.20382/jocg.v10i1a9},
volume = {10},
year = {2019},
}
@inproceedings{6528,
abstract = {We construct a verifiable delay function (VDF) by showing how the Rivest-Shamir-Wagner time-lock puzzle can be made publicly verifiable. Concretely, we give a statistically sound public-coin protocol to prove that a tuple (N,x,T,y) satisfies y=x2T (mod N) where the prover doesn’t know the factorization of N and its running time is dominated by solving the puzzle, that is, compute x2T, which is conjectured to require T sequential squarings. To get a VDF we make this protocol non-interactive using the Fiat-Shamir heuristic.The motivation for this work comes from the Chia blockchain design, which uses a VDF as akey ingredient. For typical parameters (T≤2 40, N= 2048), our proofs are of size around 10K B, verification cost around three RSA exponentiations and computing the proof is 8000 times faster than solving the puzzle even without any parallelism.},
author = {Pietrzak, Krzysztof Z},
booktitle = {10th Innovations in Theoretical Computer Science Conference},
isbn = {978-3-95977-095-8},
issn = {1868-8969},
location = {San Diego, CA, United States},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Simple verifiable delay functions}},
doi = {10.4230/LIPICS.ITCS.2019.60},
volume = {124},
year = {2019},
}
@inproceedings{6569,
abstract = {Knowledge distillation, i.e. one classifier being trained on the outputs of another classifier, is an empirically very successful technique for knowledge transfer between classifiers. It has even been observed that classifiers learn much faster and more reliably if trained with the outputs of another classifier as soft labels, instead of from ground truth data. So far, however, there is no satisfactory theoretical explanation of this phenomenon. In this work, we provide the first insights into the working mechanisms of distillation by studying the special case of linear and deep linear classifiers. Specifically, we prove a generalization bound that establishes fast convergence of the expected risk of a distillation-trained linear classifier. From the bound and its proof we extract three keyfactors that determine the success of distillation: data geometry – geometric properties of the datadistribution, in particular class separation, has an immediate influence on the convergence speed of the risk; optimization bias– gradient descentoptimization finds a very favorable minimum of the distillation objective; and strong monotonicity– the expected risk of the student classifier always decreases when the size of the training set grows.},
author = {Bui Thi Mai, Phuong and Lampert, Christoph},
booktitle = {Proceedings of the 36th International Conference on Machine Learning},
location = {Long Beach, CA, United States},
pages = {5142--5151},
publisher = {PMLR},
title = {{Towards understanding knowledge distillation}},
volume = {97},
year = {2019},
}
@inproceedings{6565,
abstract = {In this paper, we address the problem of synthesizing periodic switching controllers for stabilizing a family of linear systems. Our broad approach consists of constructing a finite game graph based on the family of linear systems such that every winning strategy on the game graph corresponds to a stabilizing switching controller for the family of linear systems. The construction of a (finite) game graph, the synthesis of a winning strategy and the extraction of a stabilizing controller are all computationally feasible. We illustrate our method on an example.},
author = {Kundu, Atreyee and Garcia Soto, Miriam and Prabhakar, Pavithra},
booktitle = {5th Indian Control Conference Proceedings},
isbn = {978-153866246-5},
location = {Delhi, India},
publisher = {IEEE},
title = {{Formal synthesis of stabilizing controllers for periodically controlled linear switched systems}},
doi = {10.1109/INDIANCC.2019.8715598},
year = {2019},
}
@inproceedings{6628,
abstract = {Fejes Tóth [5] and Schneider [9] studied approximations of smooth convex hypersurfaces in Euclidean space by piecewise flat triangular meshes with a given number of vertices on the hypersurface that are optimal with respect to Hausdorff distance. They proved that this Hausdorff distance decreases inversely proportional with m 2/(d−1), where m is the number of vertices and d is the dimension of Euclidean space. Moreover the pro-portionality constant can be expressed in terms of the Gaussian curvature, an intrinsic quantity. In this short note, we prove the extrinsic nature of this constant for manifolds of sufficiently high codimension. We do so by constructing an family of isometric embeddings of the flat torus in Euclidean space.},
author = {Vegter, Gert and Wintraecken, Mathijs},
booktitle = {The 31st Canadian Conference in Computational Geometry},
location = {Edmonton, Canada},
pages = {275--279},
title = {{The extrinsic nature of the Hausdorff distance of optimal triangulations of manifolds}},
year = {2019},
}
@inproceedings{6648,
abstract = {Various kinds of data are routinely represented as discrete probability distributions. Examples include text documents summarized by histograms of word occurrences and images represented as histograms of oriented gradients. Viewing a discrete probability distribution as a point in the standard simplex of the appropriate dimension, we can understand collections of such objects in geometric and topological terms. Importantly, instead of using the standard Euclidean distance, we look into dissimilarity measures with information-theoretic justification, and we develop the theory
needed for applying topological data analysis in this setting. In doing so, we emphasize constructions that enable the usage of existing computational topology software in this context.},
author = {Edelsbrunner, Herbert and Virk, Ziga and Wagner, Hubert},
booktitle = {35th International Symposium on Computational Geometry},
isbn = {9783959771047},
location = {Portland, OR, United States},
pages = {31:1--31:14},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Topological data analysis in information space}},
doi = {10.4230/LIPICS.SOCG.2019.31},
volume = {129},
year = {2019},
}
@inproceedings{6646,
abstract = {We demonstrate robust retention of valley coherence and its control via polariton pseudospin precession through the optical TE-TM splitting in bilayer WS2 microcavity exciton polaritons at room temperature.},
author = {Khatoniar, Mandeep and Yama, Nicholas and Ghazaryan, Areg and Guddala, Sriram and Ghaemi, Pouyan and Menon, Vinod},
booktitle = {CLEO: Applications and Technology},
isbn = {9781943580576},
location = {San Jose, CA, United States},
publisher = {OSA},
title = {{Room temperature control of valley coherence in bilayer WS2 exciton polaritons}},
doi = {10.1364/cleo_at.2019.jtu2a.52},
year = {2019},
}
@article{6659,
abstract = {Chemical labeling of proteins with synthetic molecular probes offers the possibility to probe the functions of proteins of interest in living cells. However, the methods for covalently labeling targeted proteins using complementary peptide tag-probe pairs are still limited, irrespective of the versatility of such pairs in biological research. Herein, we report the new CysHis tag-Ni(II) probe pair for the specific covalent labeling of proteins. A broad-range evaluation of the reactivity profiles of the probe and the CysHis peptide tag afforded a tag-probe pair with an optimized and high labeling selectivity and reactivity. In particular, the labeling specificity of this pair was notably improved compared to the previously reported one. This pair was successfully utilized for the fluorescence imaging of membrane proteins on the surfaces of living cells, demonstrating its potential utility in biological research.},
author = {Zenmyo, Naoki and Tokumaru, Hiroki and Uchinomiya, Shohei and Fuchida, Hirokazu and Tabata, Shigekazu and Hamachi, Itaru and Shigemoto, Ryuichi and Ojida, Akio},
issn = {00092673},
journal = {Bulletin of the Chemical Society of Japan},
number = {5},
pages = {995--1000},
publisher = {Bulletin of the Chemical Society of Japan},
title = {{Optimized reaction pair of the CysHis tag and Ni(II)-NTA probe for highly selective chemical labeling of membrane proteins}},
doi = {10.1246/bcsj.20190034},
volume = {92},
year = {2019},
}
@article{6657,
abstract = {In this article a model is described how Open Access definitions can be formed on the basis of objective criteria. The common Open Access definitions such as "gold" and "green" are not exactly defined. This becomes a problem as soon as one begins to measure Open Access, for example if the development of the Open Access share should be monitored. This was discussed in the working group on Open Access Monitoring of the AT2OA project and the present model was developed, which is based on 5 critics with 4 characteristics: location, licence, version, embargo and conditions of the Open Access publication are taken into account. In the meantime, the model has also been tested in practice using R scripts, and the initial results are quite promising.},
author = {Danowski, Patrick},
journal = {VOEB-Mitteilungen},
number = {1},
pages = {59--65},
publisher = {Mitteilungen der VOEB},
title = {{An Austrian proposal for the classification of Open Access Tuples (COAT) - distinguish different open access types beyond colors}},
doi = {10.31263/voebm.v72i1.2276},
volume = {72},
year = {2019},
}
@article{6662,
abstract = {In phase retrieval, we want to recover an unknown signal 𝑥∈ℂ𝑑 from n quadratic measurements of the form 𝑦𝑖=|⟨𝑎𝑖,𝑥⟩|2+𝑤𝑖, where 𝑎𝑖∈ℂ𝑑 are known sensing vectors and 𝑤𝑖 is measurement noise. We ask the following weak recovery question: What is the minimum number of measurements n needed to produce an estimator 𝑥^(𝑦) that is positively correlated with the signal 𝑥? We consider the case of Gaussian vectors 𝑎𝑎𝑖. We prove that—in the high-dimensional limit—a sharp phase transition takes place, and we locate the threshold in the regime of vanishingly small noise. For 𝑛≤𝑑−𝑜(𝑑), no estimator can do significantly better than random and achieve a strictly positive correlation. For 𝑛≥𝑑+𝑜(𝑑), a simple spectral estimator achieves a positive correlation. Surprisingly, numerical simulations with the same spectral estimator demonstrate promising performance with realistic sensing matrices. Spectral methods are used to initialize non-convex optimization algorithms in phase retrieval, and our approach can boost the performance in this setting as well. Our impossibility result is based on classical information-theoretic arguments. The spectral algorithm computes the leading eigenvector of a weighted empirical covariance matrix. We obtain a sharp characterization of the spectral properties of this random matrix using tools from free probability and generalizing a recent result by Lu and Li. Both the upper bound and lower bound generalize beyond phase retrieval to measurements 𝑦𝑖 produced according to a generalized linear model. As a by-product of our analysis, we compare the threshold of the proposed spectral method with that of a message passing algorithm.},
author = {Mondelli, Marco and Montanari, Andrea},
issn = {1615-3383},
journal = {Foundations of Computational Mathematics},
number = {3},
pages = {703--773},
publisher = {Springer},
title = {{Fundamental limits of weak recovery with applications to phase retrieval}},
doi = {10.1007/s10208-018-9395-y},
volume = {19},
year = {2019},
}
@article{6672,
abstract = {The construction of anisotropic triangulations is desirable for various applications, such as the numerical solving of partial differential equations and the representation of surfaces in graphics. To solve this notoriously difficult problem in a practical way, we introduce the discrete Riemannian Voronoi diagram, a discrete structure that approximates the Riemannian Voronoi diagram. This structure has been implemented and was shown to lead to good triangulations in $\mathbb{R}^2$ and on surfaces embedded in $\mathbb{R}^3$ as detailed in our experimental companion paper. In this paper, we study theoretical aspects of our structure. Given a finite set of points $\mathcal{P}$ in a domain $\Omega$ equipped with a Riemannian metric, we compare the discrete Riemannian Voronoi diagram of $\mathcal{P}$ to its Riemannian Voronoi diagram. Both diagrams have dual structures called the discrete Riemannian Delaunay and the Riemannian Delaunay complex. We provide conditions that guarantee that these dual structures are identical. It then follows from previous results that the discrete Riemannian Delaunay complex can be embedded in $\Omega$ under sufficient conditions, leading to an anisotropic triangulation with curved simplices. Furthermore, we show that, under similar conditions, the simplices of this triangulation can be straightened.},
author = {Boissonnat, Jean-Daniel and Rouxel-Labbé, Mael and Wintraecken, Mathijs},
issn = {1095-7111},
journal = {SIAM Journal on Computing},
number = {3},
pages = {1046--1097},
publisher = {Society for Industrial & Applied Mathematics (SIAM)},
title = {{Anisotropic triangulations via discrete Riemannian Voronoi diagrams}},
doi = {10.1137/17m1152292},
volume = {48},
year = {2019},
}
@inproceedings{6725,
abstract = {A Valued Constraint Satisfaction Problem (VCSP) provides a common framework that can express a wide range of discrete optimization problems. A VCSP instance is given by a finite set of variables, a finite domain of labels, and an objective function to be minimized. This function is represented as a sum of terms where each term depends on a subset of the variables. To obtain different classes of optimization problems, one can restrict all terms to come from a fixed set Γ of cost functions, called a language.
Recent breakthrough results have established a complete complexity classification of such classes with respect to language Γ: if all cost functions in Γ satisfy a certain algebraic condition then all Γ-instances can be solved in polynomial time, otherwise the problem is NP-hard. Unfortunately, testing this condition for a given language Γ is known to be NP-hard. We thus study exponential algorithms for this meta-problem. We show that the tractability condition of a finite-valued language Γ can be tested in O(3‾√3|D|⋅poly(size(Γ))) time, where D is the domain of Γ and poly(⋅) is some fixed polynomial. We also obtain a matching lower bound under the Strong Exponential Time Hypothesis (SETH). More precisely, we prove that for any constant δ<1 there is no O(3‾√3δ|D|) algorithm, assuming that SETH holds.},
author = {Kolmogorov, Vladimir},
booktitle = {46th International Colloquium on Automata, Languages and Programming},
isbn = {978-3-95977-109-2},
issn = {1868-8969},
location = {Patras, Greece},
pages = {77:1--77:12},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Testing the complexity of a valued CSP language}},
doi = {10.4230/LIPICS.ICALP.2019.77},
volume = {132},
year = {2019},
}
@inbook{6726,
abstract = {Randomness is an essential part of any secure cryptosystem, but many constructions rely on distributions that are not uniform. This is particularly true for lattice based cryptosystems, which more often than not make use of discrete Gaussian distributions over the integers. For practical purposes it is crucial to evaluate the impact that approximation errors have on the security of a scheme to provide the best possible trade-off between security and performance. Recent years have seen surprising results allowing to use relatively low precision while maintaining high levels of security. A key insight in these results is that sampling a distribution with low relative error can provide very strong security guarantees. Since floating point numbers provide guarantees on the relative approximation error, they seem a suitable tool in this setting, but it is not obvious which sampling algorithms can actually profit from them. While previous works have shown that inversion sampling can be adapted to provide a low relative error (Pöppelmann et al., CHES 2014; Prest, ASIACRYPT 2017), other works have called into question if this is possible for other sampling techniques (Zheng et al., Eprint report 2018/309). In this work, we consider all sampling algorithms that are popular in the cryptographic setting and analyze the relationship of floating point precision and the resulting relative error. We show that all of the algorithms either natively achieve a low relative error or can be adapted to do so.},
author = {Walter, Michael},
booktitle = {Progress in Cryptology – AFRICACRYPT 2019},
editor = {Buchmann, J and Nitaj, A and Rachidi, T},
isbn = {978-3-0302-3695-3},
issn = {0302-9743},
location = {Rabat, Morocco},
pages = {157--180},
publisher = {Springer Nature},
title = {{Sampling the integers with low relative error}},
doi = {10.1007/978-3-030-23696-0_9},
volume = {11627},
year = {2019},
}
@article{6663,
abstract = {Consider the problem of constructing a polar code of block length N for a given transmission channel W. Previous approaches require one to compute the reliability of the N synthetic channels and then use only those that are sufficiently reliable. However, we know from two independent works by Schürch and by Bardet et al. that the synthetic channels are partially ordered with respect to degradation. Hence, it is natural to ask whether the partial order can be exploited to reduce the computational burden of the construction problem. We show that, if we take advantage of the partial order, we can construct a polar code by computing the reliability of roughly a fraction 1/ log 3/2 N of the synthetic channels. In particular, we prove that N/ log 3/2 N is a lower bound on the number of synthetic channels to be considered and such a bound is tight up to a multiplicative factor log log N. This set of roughly N/ log 3/2 N synthetic channels is universal, in the sense that it allows one to construct polar codes for any W, and it can be identified by solving a maximum matching problem on a bipartite graph. Our proof technique consists of reducing the construction problem to the problem of computing the maximum cardinality of an antichain for a suitable partially ordered set. As such, this method is general, and it can be used to further improve the complexity of the construction problem, in case a refined partial order on the synthetic channels of polar codes is discovered.},
author = {Mondelli, Marco and Hassani, Hamed and Urbanke, Rudiger},
journal = {IEEE},
number = {5},
pages = {2782--2791},
publisher = {IEEE},
title = {{Construction of polar codes with sublinear complexity}},
doi = {10.1109/tit.2018.2889667},
volume = {65},
year = {2019},
}
@inproceedings{6747,
abstract = {We establish connections between the problem of learning a two-layer neural network and tensor decomposition. We consider a model with feature vectors x∈ℝd, r hidden units with weights {wi}1≤i≤r and output y∈ℝ, i.e., y=∑ri=1σ(w𝖳ix), with activation functions given by low-degree polynomials. In particular, if σ(x)=a0+a1x+a3x3, we prove that no polynomial-time learning algorithm can outperform the trivial predictor that assigns to each example the response variable 𝔼(y), when d3/2≪r≪d2. Our conclusion holds for a `natural data distribution', namely standard Gaussian feature vectors x, and output distributed according to a two-layer neural network with random isotropic weights, and under a certain complexity-theoretic assumption on tensor decomposition. Roughly speaking, we assume that no polynomial-time algorithm can substantially outperform current methods for tensor decomposition based on the sum-of-squares hierarchy. We also prove generalizations of this statement for higher degree polynomial activations, and non-random weight vectors. Remarkably, several existing algorithms for learning two-layer networks with rigorous guarantees are based on tensor decomposition. Our results support the idea that this is indeed the core computational difficulty in learning such networks, under the stated generative model for the data. As a side result, we show that under this model learning the network requires accurate learning of its weights, a property that does not hold in a more general setting. },
author = {Mondelli, Marco and Montanari, Andrea},
booktitle = {Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics},
location = {Naha, Okinawa, Japan},
pages = {1051--1060},
publisher = {Proceedings of Machine Learning Research},
title = {{On the connection between learning two-layers neural networks and tensor decomposition}},
volume = {89},
year = {2019},
}
@article{6750,
abstract = {Polar codes have gained extensive attention during the past few years and recently they have been selected for the next generation of wireless communications standards (5G). Successive-cancellation-based (SC-based) decoders, such as SC list (SCL) and SC flip (SCF), provide a reasonable error performance for polar codes at the cost of low decoding speed. Fast SC-based decoders, such as Fast-SSC, Fast-SSCL, and Fast-SSCF, identify the special constituent codes in a polar code graph off-line, produce a list of operations, store the list in memory, and feed the list to the decoder to decode the constituent codes in order efficiently, thus increasing the decoding speed. However, the list of operations is dependent on the code rate and as the rate changes, a new list is produced, making fast SC-based decoders not rate-flexible. In this paper, we propose a completely rate-flexible fast SC-based decoder by creating the list of operations directly in hardware, with low implementation complexity. We further propose a hardware architecture implementing the proposed method and show that the area occupation of the rate-flexible fast SC-based decoder in this paper is only 38% of the total area of the memory-based base-line decoder when 5G code rates are supported. },
author = {Hashemi, Seyyed Ali and Condo, Carlo and Mondelli, Marco and Gross, Warren J},
issn = {1053587X},
journal = {IEEE Transactions on Signal Processing},
number = {22},
publisher = {IEEE},
title = {{Rate-flexible fast polar decoders}},
doi = {10.1109/TSP.2019.2944738},
volume = {67},
year = {2019},
}
@article{6759,
abstract = {We consider the graph class Grounded-L corresponding to graphs that admit an intersection representation by L-shaped curves, where additionally the topmost points of each curve are assumed to belong to a common horizontal line. We prove that Grounded-L graphs admit an equivalent characterisation in terms of vertex ordering with forbidden patterns.
We also compare this class to related intersection classes, such as the grounded segment graphs, the monotone L-graphs (a.k.a. max point-tolerance graphs), or the outer-1-string graphs. We give constructions showing that these classes are all distinct and satisfy only trivial or previously known inclusions.},
author = {Jelínek, Vít and Töpfer, Martin},
issn = {10778926},
journal = {Electronic Journal of Combinatorics},
number = {3},
publisher = {Electronic Journal of Combinatorics},
title = {{On grounded L-graphs and their relatives}},
doi = {10.37236/8096},
volume = {26},
year = {2019},
}
@inproceedings{6822,
abstract = {In two-player games on graphs, the players move a token through a graph to produce an infinite path, which determines the qualitative winner or quantitative payoff of the game. In bidding games, in each turn, we hold an auction between the two players to determine which player moves the token. Bidding games have largely been studied with concrete bidding mechanisms that are variants of a first-price auction: in each turn both players simultaneously submit bids, the higher
bidder moves the token, and pays his bid to the lower bidder in Richman bidding, to the bank in poorman bidding, and in taxman bidding, the bid is split between the other player and the bank according to a predefined constant factor. Bidding games are deterministic games. They have an intriguing connection with a fragment of stochastic games called
randomturn games. We study, for the first time, a combination of bidding games with probabilistic behavior; namely, we study bidding games that are played on Markov decision processes, where the players bid for the right to choose the next action, which determines the probability distribution according to which the next vertex is chosen. We study parity and meanpayoff bidding games on MDPs and extend results from the deterministic bidding setting to the probabilistic one.},
author = {Avni, Guy and Henzinger, Thomas A and Ibsen-Jensen, Rasmus and Novotny, Petr},
booktitle = { Proceedings of the 13th International Conference of Reachability Problems},
isbn = {978-303030805-6},
issn = {0302-9743},
location = {Brussels, Belgium},
pages = {1--12},
publisher = {Springer},
title = {{Bidding games on Markov decision processes}},
doi = {10.1007/978-3-030-30806-3_1},
volume = {11674},
year = {2019},
}
@article{6856,
abstract = {Plant mating systems play a key role in structuring genetic variation both within and between species. In hybrid zones, the outcomes and dynamics of hybridization are usually interpreted as the balance between gene flow and selection against hybrids. Yet, mating systems can introduce selective forces that alter these expectations; with diverse outcomes for the level and direction of gene flow depending on variation in outcrossing and whether the mating systems of the species pair are the same or divergent. We present a survey of hybridization in 133 species pairs from 41 plant families and examine how patterns of hybridization vary with mating system. We examine if hybrid zone mode, level of gene flow, asymmetries in gene flow and the frequency of reproductive isolating barriers vary in relation to mating system/s of the species pair. We combine these results with a simulation model and examples from the literature to address two general themes: (i) the two‐way interaction between introgression and the evolution of reproductive systems, and (ii) how mating system can facilitate or restrict interspecific gene flow. We conclude that examining mating system with hybridization provides unique opportunities to understand divergence and the processes underlying reproductive isolation.},
author = {Pickup, Melinda and Barton, Nicholas H and Brandvain, Yaniv and Fraisse, Christelle and Yakimowski, Sarah and Dixit, Tanmay and Lexer, Christian and Cereghetti, Eva and Field, David},
journal = {New Phytologist},
number = {3},
pages = {1035--1047},
title = {{Mating system variation in hybrid zones: Facilitation, barriers and asymmetries to gene flow}},
doi = {10.1111/nph.16180},
volume = {224},
year = {2019},
}
@inproceedings{6887,
abstract = {The fundamental model-checking problem, given as input a model and a specification, asks for the algorithmic verification of whether the model satisfies the specification. Two classical models for reactive systems are graphs and Markov decision processes (MDPs). A basic specification formalism in the verification of reactive systems is the strong fairness (aka Streett) objective, where given different types of requests and corresponding grants, the requirement is that for each type, if the request event happens infinitely often, then the corresponding grant event must also happen infinitely often. All omega-regular objectives can be expressed as Streett objectives and hence they are canonical in verification. Consider graphs/MDPs with n vertices, m edges, and a Streett objectives with k pairs, and let b denote the size of the description of the Streett objective for the sets of requests and grants. The current best-known algorithm for the problem requires time O(min(n^2, m sqrt{m log n}) + b log n). In this work we present randomized near-linear time algorithms, with expected running time O~(m + b), where the O~ notation hides poly-log factors. Our randomized algorithms are near-linear in the size of the input, and hence optimal up to poly-log factors. },
author = {Chatterjee, Krishnendu and Dvorák, Wolfgang and Henzinger, Monika H and Svozil, Alexander},
booktitle = {Leibniz International Proceedings in Informatics},
location = {Amsterdam, Netherlands},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Near-linear time algorithms for Streett objectives in graphs and MDPs}},
doi = {10.4230/LIPICS.CONCUR.2019.7},
volume = {140},
year = {2019},
}
@inproceedings{6888,
abstract = {In this paper, we design novel liquid time-constant recurrent neural networks for robotic control, inspired by the brain of the nematode, C. elegans. In the worm's nervous system, neurons communicate through nonlinear time-varying synaptic links established amongst them by their particular wiring structure. This property enables neurons to express liquid time-constants dynamics and therefore allows the network to originate complex behaviors with a small number of neurons. We identify neuron-pair communication motifs as design operators and use them to configure compact neuronal network structures to govern sequential robotic tasks. The networks are systematically designed to map the environmental observations to motor actions, by their hierarchical topology from sensory neurons, through recurrently-wired interneurons, to motor neurons. The networks are then parametrized in a supervised-learning scheme by a search-based algorithm. We demonstrate that obtained networks realize interpretable dynamics. We evaluate their performance in controlling mobile and arm robots, and compare their attributes to other artificial neural network-based control agents. Finally, we experimentally show their superior resilience to environmental noise, compared to the existing machine learning-based methods.},
author = {Lechner, Mathias and Hasani, Ramin and Zimmer, Manuel and Henzinger, Thomas A and Grosu, Radu},
booktitle = {Proceedings - IEEE International Conference on Robotics and Automation},
isbn = {9781538660270},
location = {Montreal, QC, Canada},
publisher = {IEEE},
title = {{Designing worm-inspired neural networks for interpretable robotic control}},
doi = {10.1109/icra.2019.8793840},
volume = {2019-May},
year = {2019},
}
@inproceedings{6886,
abstract = {In two-player games on graphs, the players move a token through a graph to produce an infinite path, which determines the winner of the game. Such games are central in formal methods since they model the interaction between a non-terminating system and its environment. In bidding games the players bid for the right to move the token: in each round, the players simultaneously submit bids, and the higher bidder moves the token and pays the other player. Bidding games are known to have a clean and elegant mathematical structure that relies on the ability of the players to submit arbitrarily small bids. Many applications, however, require a fixed granularity for the bids, which can represent, for example, the monetary value expressed in cents. We study, for the first time, the combination of discrete-bidding and infinite-duration games. Our most important result proves that these games form a large determined subclass of concurrent games, where determinacy is the strong property that there always exists exactly one player who can guarantee winning the game. In particular, we show that, in contrast to non-discrete bidding games, the mechanism with which tied bids are resolved plays an important role in discrete-bidding games. We study several natural tie-breaking mechanisms and show that, while some do not admit determinacy, most natural mechanisms imply determinacy for every pair of initial budgets. },
author = {Aghajohari, Milad and Avni, Guy and Henzinger, Thomas A},
location = {Amsterdam, Netherlands},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Determinacy in discrete-bidding infinite-duration games}},
doi = {10.4230/LIPICS.CONCUR.2019.20},
volume = {140},
year = {2019},
}
@inproceedings{6885,
abstract = {A vector addition system with states (VASS) consists of a finite set of states and counters. A configuration is a state and a value for each counter; a transition changes the state and each counter is incremented, decremented, or left unchanged. While qualitative properties such as state and configuration reachability have been studied for VASS, we consider the long-run average cost of infinite computations of VASS. The cost of a configuration is for each state, a linear combination of the counter values. In the special case of uniform cost functions, the linear combination is the same for all states. The (regular) long-run emptiness problem is, given a VASS, a cost function, and a threshold value, if there is a (lasso-shaped) computation such that the long-run average value of the cost function does not exceed the threshold. For uniform cost functions, we show that the regular long-run emptiness problem is (a) decidable in polynomial time for integer-valued VASS, and (b) decidable but nonelementarily hard for natural-valued VASS (i.e., nonnegative counters). For general cost functions, we show that the problem is (c) NP-complete for integer-valued VASS, and (d) undecidable for natural-valued VASS. Our most interesting result is for (c) integer-valued VASS with general cost functions, where we establish a connection between the regular long-run emptiness problem and quadratic Diophantine inequalities. The general (nonregular) long-run emptiness problem is equally hard as the regular problem in all cases except (c), where it remains open. },
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Otop, Jan},
location = {Amsterdam, Netherlands},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Long-run average behavior of vector addition systems with states}},
doi = {10.4230/LIPICS.CONCUR.2019.27},
volume = {140},
year = {2019},
}
@inproceedings{6889,
abstract = {We study Markov decision processes and turn-based stochastic games with parity conditions. There are three qualitative winning criteria, namely, sure winning, which requires all paths to satisfy the condition, almost-sure winning, which requires the condition to be satisfied with probability 1, and limit-sure winning, which requires the condition to be satisfied with probability arbitrarily close to 1. We study the combination of two of these criteria for parity conditions, e.g., there are two parity conditions one of which must be won surely, and the other almost-surely. The problem has been studied recently by Berthon et al. for MDPs with combination of sure and almost-sure winning, under infinite-memory strategies, and the problem has been established to be in NP cap co-NP. Even in MDPs there is a difference between finite-memory and infinite-memory strategies. Our main results for combination of sure and almost-sure winning are as follows: (a) we show that for MDPs with finite-memory strategies the problem is in NP cap co-NP; (b) we show that for turn-based stochastic games the problem is co-NP-complete, both for finite-memory and infinite-memory strategies; and (c) we present algorithmic results for the finite-memory case, both for MDPs and turn-based stochastic games, by reduction to non-stochastic parity games. In addition we show that all the above complexity results also carry over to combination of sure and limit-sure winning, and results for all other combinations can be derived from existing results in the literature. Thus we present a complete picture for the study of combinations of two qualitative winning criteria for parity conditions in MDPs and turn-based stochastic games. },
author = {Chatterjee, Krishnendu and Piterman, Nir},
location = {Amsterdam, Netherlands},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Combinations of Qualitative Winning for Stochastic Parity Games}},
doi = {10.4230/LIPICS.CONCUR.2019.6},
volume = {140},
year = {2019},
}
@inproceedings{6931,
abstract = {Consider a distributed system with n processors out of which f can be Byzantine faulty. In the
approximate agreement task, each processor i receives an input value xi and has to decide on an
output value yi such that
1. the output values are in the convex hull of the non-faulty processors’ input values,
2. the output values are within distance d of each other.
Classically, the values are assumed to be from an m-dimensional Euclidean space, where m ≥ 1.
In this work, we study the task in a discrete setting, where input values with some structure
expressible as a graph. Namely, the input values are vertices of a finite graph G and the goal is to
output vertices that are within distance d of each other in G, but still remain in the graph-induced
convex hull of the input values. For d = 0, the task reduces to consensus and cannot be solved with
a deterministic algorithm in an asynchronous system even with a single crash fault. For any d ≥ 1,
we show that the task is solvable in asynchronous systems when G is chordal and n > (ω + 1)f,
where ω is the clique number of G. In addition, we give the first Byzantine-tolerant algorithm for a
variant of lattice agreement. For synchronous systems, we show tight resilience bounds for the exact
variants of these and related tasks over a large class of combinatorial structures.},
author = {Nowak, Thomas and Rybicki, Joel},
booktitle = {33rd International Symposium on Distributed Computing},
keywords = {consensus, approximate agreement, Byzantine faults, chordal graphs, lattice agreement},
location = {Budapest, Hungary},
pages = {29:1----29:17},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Byzantine approximate agreement on graphs}},
doi = {10.4230/LIPICS.DISC.2019.29},
volume = {146},
year = {2019},
}
@inproceedings{6985,
abstract = {In this paper, we introduce a novel method to interpret recurrent neural networks (RNNs), particularly long short-term memory networks (LSTMs) at the cellular level. We propose a systematic pipeline for interpreting individual hidden state dynamics within the network using response characterization methods. The ranked contribution of individual cells to the network's output is computed by analyzing a set of interpretable metrics of their decoupled step and sinusoidal responses. As a result, our method is able to uniquely identify neurons with insightful dynamics, quantify relationships between dynamical properties and test accuracy through ablation analysis, and interpret the impact of network capacity on a network's dynamical distribution. Finally, we demonstrate the generalizability and scalability of our method by evaluating a series of different benchmark sequential datasets.},
author = {Hasani, Ramin and Amini, Alexander and Lechner, Mathias and Naser, Felix and Grosu, Radu and Rus, Daniela},
booktitle = {Proceedings of the International Joint Conference on Neural Networks},
isbn = {9781728119854},
location = {Budapest, Hungary},
publisher = {IEEE},
title = {{Response characterization for auditing cell dynamics in long short-term memory networks}},
doi = {10.1109/ijcnn.2019.8851954},
year = {2019},
}
@article{7007,
abstract = {We consider the primitive relay channel, where the source sends a message to the relay and to the destination, and the relay helps the communication by transmitting an additional message to the destination via a separate channel. Two well-known coding techniques have been introduced for this setting: decode-and-forward and compress-and-forward. In decode-and-forward, the relay completely decodes the message and sends some information to the destination; in compress-and-forward, the relay does not decode, and it sends a compressed version of the received signal to the destination using Wyner–Ziv coding. In this paper, we present a novel coding paradigm that provides an improved achievable rate for the primitive relay channel. The idea is to combine compress-and-forward and decode-and-forward via a chaining construction. We transmit over pairs of blocks: in the first block, we use compress-and-forward; and, in the second block, we use decode-and-forward. More specifically, in the first block, the relay does not decode, it compresses the received signal via Wyner–Ziv, and it sends only part of the compression to the destination. In the second block, the relay completely decodes the message, it sends some information to the destination, and it also sends the remaining part of the compression coming from the first block. By doing so, we are able to strictly outperform both compress-and-forward and decode-and-forward. Note that the proposed coding scheme can be implemented with polar codes. As such, it has the typical attractive properties of polar coding schemes, namely, quasi-linear encoding and decoding complexity, and error probability that decays at super-polynomial speed. As a running example, we take into account the special case of the erasure relay channel, and we provide a comparison between the rates achievable by our proposed scheme and the existing upper and lower bounds.},
author = {Mondelli, Marco and Hassani, S. Hamed and Urbanke, Rüdiger},
issn = {1999-4893},
journal = {Algorithms},
number = {10},
publisher = {MDPI},
title = {{A new coding paradigm for the primitive relay channel}},
doi = {10.3390/a12100218},
volume = {12},
year = {2019},
}
@inproceedings{7035,
abstract = {The aim of this short note is to expound one particular issue that was discussed during the talk [10] given at the symposium ”Researches on isometries as preserver problems and related topics” at Kyoto RIMS. That is, the role of Dirac masses by describing the isometry group of various metric spaces of probability measures. This article is of survey character, and it does not contain any essentially new results.From an isometric point of view, in some cases, metric spaces of measures are similar to C(K)-type function spaces. Similarity means here that their isometries are driven by some nice transformations of the underlying space. Of course, it depends on the particular choice of the metric how nice these transformations should be. Sometimes, as we will see, being a homeomorphism is enough to generate an isometry. But sometimes we need more: the transformation must preserve the underlying distance as well. Statements claiming that isometries in questions are necessarily induced by homeomorphisms are called Banach-Stone-type results, while results asserting that the underlying transformation is necessarily an isometry are termed as isometric rigidity results.As Dirac masses can be considered as building bricks of the set of all Borel measures, a natural question arises:Is it enough to understand how an isometry acts on the set of Dirac masses? Does this action extend uniquely to all measures?In what follows, we will thoroughly investigate this question.},
author = {Geher, Gyorgy Pal and Titkos, Tamas and Virosztek, Daniel},
booktitle = {Kyoto RIMS Kôkyûroku},
location = {Kyoto, Japan},
pages = {34--41},
publisher = {Research Institute for Mathematical Sciences, Kyoto University},
title = {{Dirac masses and isometric rigidity}},
volume = {2125},
year = {2019},
}
@article{7055,
abstract = {A recent class of topological nodal-line semimetals with the general formula MSiX (M = Zr, Hf and X = S, Se, Te) has attracted much experimental and theoretical interest due to their properties, particularly their large magnetoresistances and high carrier mobilities. The plateletlike nature of the MSiX crystals and their extremely low residual resistivities make measurements of the resistivity along the [001] direction extremely challenging. To accomplish such measurements, microstructures of single crystals were prepared using focused ion beam techniques. Microstructures prepared in this manner have very well-defined geometries and maintain their high crystal quality, verified by the observations of quantum oscillations. We present magnetoresistance and quantum oscillation data for currents applied along both [001] and [100] in ZrSiS and ZrSiSe, which are consistent with the nontrivial topology of the Dirac line-node, as determined by a measured π Berry phase. Surprisingly, we find that, despite the three dimensional nature of both the Fermi surfaces of ZrSiS and ZrSiSe, both the resistivity anisotropy under applied magnetic fields and the in-plane angular dependent magnetoresistance differ considerably between the two compounds. Finally, we discuss the role microstructuring can play in the study of these materials and our ability to make these microstructures free-standing.},
author = {Shirer, Kent R. and Modic, Kimberly A and Zimmerling, Tino and Bachmann, Maja D. and König, Markus and Moll, Philip J. W. and Schoop, Leslie and Mackenzie, Andrew P.},
issn = {2166-532X},
journal = {APL Materials},
number = {10},
publisher = {AIP},
title = {{Out-of-plane transport in ZrSiS and ZrSiSe microstructures}},
doi = {10.1063/1.5124568},
volume = {7},
year = {2019},
}
@article{7057,
abstract = {We present a high magnetic field study of NbP—a member of the monopnictide Weyl semimetal (WSM) family. While the monoarsenides (NbAs and TaAs) have topologically distinct left and right-handed Weyl fermi surfaces, NbP is argued to be “topologically trivial” due to the fact that all pairs of Weyl nodes are encompassed by a single Fermi surface. We use torque magnetometry to measure the magnetic response of NbP up to 60 tesla and uncover a Berry paramagnetic response, characteristic of the topological Weyl nodes, across the entire field range. At the quantum limit B* (≈32 T), τ/B experiences a change in slope when the chemical potential enters the last Landau level. Our calculations confirm that this magnetic response arises from band topology of the Weyl pocket, even though the Fermi surface encompasses both Weyl nodes at zero magnetic field. We also find that the magnetic field pulls the chemical potential to the chiral n = 0 Landau level in the quantum limit, providing a disorder-free way of accessing chiral Weyl fermions in systems that are “not quite” WSMs in zero magnetic field.},
author = {Modic, Kimberly A and Meng, Tobias and Ronning, Filip and Bauer, Eric D. and Moll, Philip J. W. and Ramshaw, B. J.},
issn = {2045-2322},
journal = {Scientific Reports},
number = {1},
publisher = {Springer Nature},
title = {{Thermodynamic signatures of Weyl fermions in NbP}},
doi = {10.1038/s41598-018-38161-7},
volume = {9},
year = {2019},
}
@article{7056,
abstract = {In the Ca1−x La x FeAs2 (1 1 2) family of pnictide superconductors, we have investigated a highly overdoped composition (x = 0.56), prepared by a high-pressure, high-temperature synthesis. Magnetic measurements show an antiferromagnetic transition at T N = 120 K, well above the one at lower doping (0.15 < x < 0.27).
Below the onset of long-range magnetic order at T N, the electrical resistivity is strongly reduced and is dominated by electron–electron interactions, as evident from its temperature dependence. The Seebeck coefficient shows a clear metallic behavior as in narrow band conductors. The temperature dependence of the Hall coefficient and the violation of Kohler's rule agree with the multiband character of the material. No superconductivity was observed down to 1.8 K. The success of the high-pressure synthesis encourages further investigations of the so far only partially explored phase diagram in this family of Iron-based high temperature superconductors.
},
author = {Martino, Edoardo and Bachmann, Maja D and Rossi, Lidia and Modic, Kimberly A and Zivkovic, Ivica and Rønnow, Henrik M and Moll, Philip J W and Akrap, Ana and Forró, László and Katrych, Sergiy},
issn = {1361-648X},
journal = {Journal of Physics: Condensed Matter},
number = {48},
publisher = {IOP Publishing},
title = {{Persistent antiferromagnetic order in heavily overdoped Ca1−x La x FeAs2}},
doi = {10.1088/1361-648x/ab3b43},
volume = {31},
year = {2019},
}
@article{7082,
abstract = {Although crystals of strongly correlated metals exhibit a diverse set of electronic ground states, few approaches exist for spatially modulating their properties. In this study, we demonstrate disorder-free control, on the micrometer scale, over the superconducting state in samples of the heavy-fermion superconductor CeIrIn5. We pattern crystals by focused ion beam milling to tailor the boundary conditions for the elastic deformation upon thermal contraction during cooling. The resulting nonuniform strain fields induce complex patterns of superconductivity, owing to the strong dependence of the transition temperature on the strength and direction of strain. These results showcase a generic approach to manipulating electronic order on micrometer length scales in strongly correlated matter without compromising the cleanliness, stoichiometry, or mean free path.},
author = {Bachmann, Maja D. and Ferguson, G. M. and Theuss, Florian and Meng, Tobias and Putzke, Carsten and Helm, Toni and Shirer, K. R. and Li, You-Sheng and Modic, Kimberly A and Nicklas, Michael and König, Markus and Low, D. and Ghosh, Sayak and Mackenzie, Andrew P. and Arnold, Frank and Hassinger, Elena and McDonald, Ross D. and Winter, Laurel E. and Bauer, Eric D. and Ronning, Filip and Ramshaw, B. J. and Nowack, Katja C. and Moll, Philip J. W.},
issn = {1095-9203},
journal = {Science},
number = {6462},
pages = {221--226},
publisher = {AAAS},
title = {{Spatial control of heavy-fermion superconductivity in CeIrIn5}},
doi = {10.1126/science.aao6640},
volume = {366},
year = {2019},
}
@article{7128,
abstract = {Loss of functional cardiomyocytes is a major determinant of heart failure after myocardial infarction. Previous high throughput screening studies have identified a few microRNAs (miRNAs) that can induce cardiomyocyte proliferation and stimulate cardiac regeneration in mice. Here, we show that all of the most effective of these miRNAs activate nuclear localization of the master transcriptional cofactor Yes-associated protein (YAP) and induce expression of YAP-responsive genes. In particular, miR-199a-3p directly targets two mRNAs coding for proteins impinging on the Hippo pathway, the upstream YAP inhibitory kinase TAOK1, and the E3 ubiquitin ligase β-TrCP, which leads to YAP degradation. Several of the pro-proliferative miRNAs (including miR-199a-3p) also inhibit filamentous actin depolymerization by targeting Cofilin2, a process that by itself activates YAP nuclear translocation. Thus, activation of YAP and modulation of the actin cytoskeleton are major components of the pro-proliferative action of miR-199a-3p and other miRNAs that induce cardiomyocyte proliferation.},
author = {Torrini, Consuelo and Cubero, Ryan J and Dirkx, Ellen and Braga, Luca and Ali, Hashim and Prosdocimo, Giulia and Gutierrez, Maria Ines and Collesi, Chiara and Licastro, Danilo and Zentilin, Lorena and Mano, Miguel and Zacchigna, Serena and Vendruscolo, Michele and Marsili, Matteo and Samal, Areejit and Giacca, Mauro},
issn = {2211-1247},
journal = {Cell Reports},
keywords = {cardiomyocyte, cell cycle, Cofilin2, cytoskeleton, Hippo, microRNA, regeneration, YAP},
number = {9},
pages = {2759--2771.e5},
publisher = {Elsevier},
title = {{Common regulatory pathways mediate activity of microRNAs inducing cardiomyocyte proliferation}},
doi = {10.1016/j.celrep.2019.05.005},
volume = {27},
year = {2019},
}
@article{7130,
abstract = {We show that statistical criticality, i.e. the occurrence of power law frequency distributions, arises in samples that are maximally informative about the underlying generating process. In order to reach this conclusion, we first identify the frequency with which different outcomes occur in a sample, as the variable carrying useful information on the generative process. The entropy of the frequency, that we call relevance, provides an upper bound to the number of informative bits. This differs from the entropy of the data, that we take as a measure of resolution. Samples that maximise relevance at a given resolution—that we call maximally informative samples—exhibit statistical criticality. In particular, Zipf's law arises at the optimal trade-off between resolution (i.e. compression) and relevance. As a byproduct, we derive a bound of the maximal number of parameters that can be estimated from a dataset, in the absence of prior knowledge on the generative model.
Furthermore, we relate criticality to the statistical properties of the representation of the data generating process. We show that, as a consequence of the concentration property of the asymptotic equipartition property, representations that are maximally informative about the data generating process are characterised by an exponential distribution of energy levels. This arises from a principle of minimal entropy, that is conjugate of the maximum entropy principle in statistical mechanics. This explains why statistical criticality requires no parameter fine tuning in maximally informative samples.},
author = {Cubero, Ryan J and Jo, Junghyo and Marsili, Matteo and Roudi, Yasser and Song, Juyong},
issn = {1742-5468},
journal = {Journal of Statistical Mechanics: Theory and Experiment},
keywords = {optimization under uncertainty, source coding, large deviation},
number = {6},
publisher = {IOP Publishing},
title = {{Statistical criticality arises in most informative representations}},
doi = {10.1088/1742-5468/ab16c8},
volume = {2019},
year = {2019},
}
@article{7150,
abstract = {In this work, we use algebraic methods for studying distance computation and subgraph detection tasks in the congested clique model. Specifically, we adapt parallel matrix multiplication implementations to the congested clique, obtaining an O(n1−2/ω) round matrix multiplication algorithm, where ω<2.3728639 is the exponent of matrix multiplication. In conjunction with known techniques from centralised algorithmics, this gives significant improvements over previous best upper bounds in the congested clique model. The highlight results include:
1. triangle and 4-cycle counting in O(n0.158) rounds, improving upon the O(n1/3) algorithm of Dolev et al. [DISC 2012],
2. a (1+o(1))-approximation of all-pairs shortest paths in O(n0.158) rounds, improving upon the O~(n1/2)-round (2+o(1))-approximation algorithm given by Nanongkai [STOC 2014], and
3. computing the girth in O(n0.158) rounds, which is the first non-trivial solution in this model.
In addition, we present a novel constant-round combinatorial algorithm for detecting 4-cycles.},
author = {Censor-Hillel, Keren and Kaski, Petteri and Korhonen, Janne and Lenzen, Christoph and Paz, Ami and Suomela, Jukka},
issn = {0178-2770},
journal = {Distributed Computing},
number = {6},
pages = {461--478},
publisher = {Springer Nature},
title = {{Algebraic methods in the congested clique}},
doi = {10.1007/s00446-016-0270-2},
volume = {32},
year = {2019},
}
@book{7171,
abstract = {Wissen Sie, was sich hinter künstlicher Intelligenz und maschinellem Lernen verbirgt?
Dieses Sachbuch erklärt Ihnen leicht verständlich und ohne komplizierte Formeln die grundlegenden Methoden und Vorgehensweisen des maschinellen Lernens. Mathematisches Vorwissen ist dafür nicht nötig. Kurzweilig und informativ illustriert Lisa, die Protagonistin des Buches, diese anhand von Alltagssituationen.
Ein Buch für alle, die in Diskussionen über Chancen und Risiken der aktuellen Entwicklung der künstlichen Intelligenz und des maschinellen Lernens mit Faktenwissen punkten möchten. Auch für Schülerinnen und Schüler geeignet!},
editor = {Kersting, Kristian and Lampert, Christoph and Rothkopf, Constantin},
isbn = {978-3-658-26762-9},
pages = {XIV, 245},
publisher = {Springer Nature},
title = {{Wie Maschinen Lernen: Künstliche Intelligenz Verständlich Erklärt}},
doi = {10.1007/978-3-658-26763-6},
year = {2019},
}
@article{7190,
abstract = {We investigate the ground-state energy of a one-dimensional Fermi gas with two bosonic impurities. We consider spinless fermions with no fermion-fermion interactions. The fermion-impurity and impurity-impurity interactions are modeled with Dirac delta functions. First, we study the case where impurity and fermion have equal masses, and the impurity-impurity two-body interaction is identical to the fermion-impurity interaction, such that the system is solvable with the Bethe ansatz. For attractive interactions, we find that the energy of the impurity-impurity subsystem is below the energy of the bound state that exists without the Fermi gas. We interpret this as a manifestation of attractive boson-boson interactions induced by the fermionic medium, and refer to the impurity-impurity subsystem as an in-medium bound state. For repulsive interactions, we find no in-medium bound states. Second, we construct an effective model to describe these interactions, and compare its predictions to the exact solution. We use this effective model to study nonintegrable systems with unequal masses and/or potentials. We discuss parameter regimes for which impurity-impurity attraction induced by the Fermi gas can lead to the formation of in-medium bound states made of bosons that repel each other in the absence of the Fermi gas.},
author = {Huber, D. and Hammer, H.-W. and Volosniev, Artem},
issn = {2643-1564},
journal = {Physical Review Research},
number = {3},
publisher = {APS},
title = {{In-medium bound states of two bosonic impurities in a one-dimensional Fermi gas}},
doi = {10.1103/physrevresearch.1.033177},
volume = {1},
year = {2019},
}
@inproceedings{7233,
abstract = {We demonstrate electro-optic frequency comb generation using a doubly resonant system comprising a whispering gallery mode disk resonator made of lithium niobate mounted inside a three dimensional copper cavity. We observe 180 sidebands centred at 1550 nm.},
author = {Rueda Sanchez, Alfredo R and Sedlmeir, Florian and Leuchs, Gerd and Kumari, Madhuri and Schwefel, Harald G.L.},
booktitle = {Nonlinear Optics, OSA Technical Digest},
isbn = {9781557528209},
location = {Waikoloa Beach, Hawaii (HI), United States},
publisher = {OSA},
title = {{Resonant electro-optic frequency comb generation in lithium niobate disk resonator inside a microwave cavity}},
doi = {10.1364/NLO.2019.NM2A.5},
year = {2019},
}
@article{7275,
abstract = {Aprotic alkali metal–oxygen batteries require reversible formation of metal superoxide or peroxide on cycling. Severe parasitic reactions cause poor rechargeability, efficiency, and cycle life and have been shown to be caused by singlet oxygen (1O2) that forms at all stages of cycling. However, its formation mechanism remains unclear. We show that disproportionation of superoxide, the product or intermediate on discharge and charge, to peroxide and oxygen is responsible for 1O2 formation. While the overall reaction is driven by the stability of peroxide and thus favored by stronger Lewis acidic cations such as Li+, the 1O2 fraction is enhanced by weak Lewis acids such as organic cations. Concurrently, the metal peroxide yield drops with increasing 1O2. The results explain a major parasitic pathway during cell cycling and the growing severity in K–, Na–, and Li–O2 cells based on the growing propensity for disproportionation. High capacities and rates with peroxides are now realized to require solution processes, which form peroxide or release O2via disproportionation. The results therefore establish the central dilemma that disproportionation is required for high capacity but also responsible for irreversible reactions. Highly reversible cell operation requires hence finding reaction routes that avoid disproportionation.},
author = {Mourad, Eléonore and Petit, Yann K. and Spezia, Riccardo and Samojlov, Aleksej and Summa, Francesco F. and Prehal, Christian and Leypold, Christian and Mahne, Nika and Slugovc, Christian and Fontaine, Olivier and Brutti, Sergio and Freunberger, Stefan Alexander},
issn = {1754-5692},
journal = {Energy & Environmental Science},
number = {8},
pages = {2559--2568},
publisher = {RSC},
title = {{Singlet oxygen from cation driven superoxide disproportionation and consequences for aprotic metal–O2 batteries}},
doi = {10.1039/c9ee01453e},
volume = {12},
year = {2019},
}
@article{7280,
abstract = {Non-aqueous lithium-oxygen batteries cycle by forming lithium peroxide during discharge and oxidizing it during recharge. The significant problem of oxidizing the solid insulating lithium peroxide can greatly be facilitated by incorporating redox mediators that shuttle electron-holes between the porous substrate and lithium peroxide. Redox mediator stability is thus key for energy efficiency, reversibility, and cycle life. However, the gradual deactivation of redox mediators during repeated cycling has not conclusively been explained. Here, we show that organic redox mediators are predominantly decomposed by singlet oxygen that forms during cycling. Their reaction with superoxide, previously assumed to mainly trigger their degradation, peroxide, and dioxygen, is orders of magnitude slower in comparison. The reduced form of the mediator is markedly more reactive towards singlet oxygen than the oxidized form, from which we derive reaction mechanisms supported by density functional theory calculations. Redox mediators must thus be designed for stability against singlet oxygen.},
author = {Kwak, Won-Jin and Kim, Hun and Petit, Yann K. and Leypold, Christian and Nguyen, Trung Thien and Mahne, Nika and Redfern, Paul and Curtiss, Larry A. and Jung, Hun-Gi and Borisov, Sergey M. and Freunberger, Stefan Alexander and Sun, Yang-Kook},
issn = {2041-1723},
journal = {Nature Communications},
publisher = {Springer Nature},
title = {{Deactivation of redox mediators in lithium-oxygen batteries by singlet oxygen}},
doi = {10.1038/s41467-019-09399-0},
volume = {10},
year = {2019},
}
@article{7276,
abstract = {Singlet oxygen (1O2) causes a major fraction of the parasitic chemistry during the cycling of non‐aqueous alkali metal‐O2 batteries and also contributes to interfacial reactivity of transition‐metal oxide intercalation compounds. We introduce DABCOnium, the mono alkylated form of 1,4‐diazabicyclo[2.2.2]octane (DABCO), as an efficient 1O2 quencher with an unusually high oxidative stability of ca. 4.2 V vs. Li/Li+. Previous quenchers are strongly Lewis basic amines with too low oxidative stability. DABCOnium is an ionic liquid, non‐volatile, highly soluble in the electrolyte, stable against superoxide and peroxide, and compatible with lithium metal. The electrochemical stability covers the required range for metal–O2 batteries and greatly reduces 1O2 related parasitic chemistry as demonstrated for the Li–O2 cell.},
author = {Petit, Yann K. and Leypold, Christian and Mahne, Nika and Mourad, Eléonore and Schafzahl, Lukas and Slugovc, Christian and Borisov, Sergey M. and Freunberger, Stefan Alexander},
issn = {1433-7851},
journal = {Angewandte Chemie International Edition},
number = {20},
pages = {6535--6539},
publisher = {Wiley},
title = {{DABCOnium: An efficient and high-voltage stable singlet oxygen quencher for metal-O2 cells}},
doi = {10.1002/anie.201901869},
volume = {58},
year = {2019},
}
@article{7281,
abstract = {Li–O2 batteries are plagued by side reactions that cause poor rechargeability and efficiency. These reactions were recently revealed to be predominantly caused by singlet oxygen, which can be neutralized by chemical traps or physical quenchers. However, traps are irreversibly consumed and thus only active for a limited time, and so far identified quenchers lack oxidative stability to be suitable for typically required recharge potentials. Thus, reducing the charge potential within the stability limit of the quencher and/or finding more stable quenchers is required. Here, we show that dimethylphenazine as a redox mediator decreases the charge potential well within the stability limit of the quencher 1,4-diazabicyclo[2.2.2]octane. The quencher can thus mitigate the parasitic reactions without being oxidatively decomposed. At the same time the quencher protects the redox mediator from singlet oxygen attack. The mutual conservation of the redox mediator and the quencher is rational for stable and effective Li–O2 batteries.},
author = {Kwak, Won-Jin and Freunberger, Stefan Alexander and Kim, Hun and Park, Jiwon and Nguyen, Trung Thien and Jung, Hun-Gi and Byon, Hye Ryung and Sun, Yang-Kook},
issn = {2155-5435},
journal = {ACS Catalysis},
number = {11},
pages = {9914--9922},
publisher = {ACS},
title = {{Mutual conservation of redox mediator and singlet oxygen quencher in Lithium–Oxygen batteries}},
doi = {10.1021/acscatal.9b01337},
volume = {9},
year = {2019},
}
@article{7282,
abstract = {Interphases that form on the anode surface of lithium-ion batteries are critical for performance and lifetime, but are poorly understood. Now, a decade-old misconception regarding a main component of the interphase has been revealed, which could potentially lead to improved devices.},
author = {Freunberger, Stefan Alexander},
issn = {1755-4330},
journal = {Nature Chemistry},
number = {9},
pages = {761--763},
publisher = {Springer Nature},
title = {{Interphase identity crisis}},
doi = {10.1038/s41557-019-0311-0},
volume = {11},
year = {2019},
}
@article{7283,
abstract = {Potassium–air batteries, which suffer from oxygen cathode and potassium metal anode degradation, can be cycled thousands of times when an organic anode replaces the metal.},
author = {Petit, Yann K. and Freunberger, Stefan Alexander},
issn = {1476-1122},
journal = {Nature Materials},
number = {4},
pages = {301--302},
publisher = {Springer Nature},
title = {{Thousands of cycles}},
doi = {10.1038/s41563-019-0313-8},
volume = {18},
year = {2019},
}
@article{7284,
abstract = {In this issue of Joule, Dongmin Im and coworkers from Samsung in South Korea describe a prototype lithium-O2 battery that reaches ∼700 Wh kg–1 and ∼600 Wh L–1 on the cell level. They cut all components to the minimum to reach this value. Difficulties filling the pores with discharge product and inhomogeneous cell utilization turn out to limit the achievable energy. Their work underlines the importance of reporting performance with respect to full cell weight and volume.},
author = {Prehal, Christian and Freunberger, Stefan Alexander},
issn = {2542-4351},
journal = {Joule},
number = {2},
pages = {321--323},
publisher = {Elsevier},
title = {{Li-O2 cell-scale energy densities}},
doi = {10.1016/j.joule.2019.01.020},
volume = {3},
year = {2019},
}
@unpublished{7358,
abstract = {Telencephalic organoids generated from human pluripotent stem cells (hPSCs) are emerging as an effective system to study the distinct features of the developing human brain and the underlying causes of many neurological disorders. While progress in organoid technology has been steadily advancing, many challenges remain including rampant batch-to-batch and cell line-to-cell line variability and irreproducibility. Here, we demonstrate that a major contributor to successful cortical organoid production is the manner in which hPSCs are maintained prior to differentiation. Optimal results were achieved using fibroblast-feeder-supported hPSCs compared to feeder-independent cells, related to differences in their transcriptomic states. Feeder-supported hPSCs display elevated activation of diverse TGFβ superfamily signaling pathways and increased expression of genes associated with naïve pluripotency. We further identify combinations of TGFβ-related growth factors that are necessary and together sufficient to impart broad telencephalic organoid competency to feeder-free hPSCs and enable reproducible formation of brain structures suitable for disease modeling.},
author = {Watanabe, Momoko and Haney, Jillian R. and Vishlaghi, Neda and Turcios, Felix and Buth, Jessie E. and Gu, Wen and Collier, Amanda J. and Miranda, Osvaldo and Chen, Di and Sabri, Shan and Clark, Amander T. and Plath, Kathrin and Christofk, Heather R. and Gandal, Michael J. and Novitch, Bennett G.},
booktitle = {bioRxiv},
pages = {75},
publisher = {Cold Spring Harbor Laboratory},
title = {{TGFβ superfamily signaling regulates the state of human stem cell pluripotency and competency to create telencephalic organoids}},
doi = {10.1101/2019.12.13.875773},
year = {2019},
}
@inproceedings{7401,
abstract = {The genus g(G) of a graph G is the minimum g such that G has an embedding on the orientable surface M_g of genus g. A drawing of a graph on a surface is independently even if every pair of nonadjacent edges in the drawing crosses an even number of times. The Z_2-genus of a graph G, denoted by g_0(G), is the minimum g such that G has an independently even drawing on M_g. By a result of Battle, Harary, Kodama and Youngs from 1962, the graph genus is additive over 2-connected blocks. In 2013, Schaefer and Stefankovic proved that the Z_2-genus of a graph is additive over 2-connected blocks as well, and asked whether this result can be extended to so-called 2-amalgamations, as an analogue of results by Decker, Glover, Huneke, and Stahl for the genus. We give the following partial answer. If G=G_1 cup G_2, G_1 and G_2 intersect in two vertices u and v, and G-u-v has k connected components (among which we count the edge uv if present), then |g_0(G)-(g_0(G_1)+g_0(G_2))|<=k+1. For complete bipartite graphs K_{m,n}, with n >= m >= 3, we prove that g_0(K_{m,n})/g(K_{m,n})=1-O(1/n). Similar results are proved also for the Euler Z_2-genus. We express the Z_2-genus of a graph using the minimum rank of partial symmetric matrices over Z_2; a problem that might be of independent interest. },
author = {Fulek, Radoslav and Kyncl, Jan},
booktitle = {35th International Symposium on Computational Geometry (SoCG 2019)},
isbn = {978-3-95977-104-7},
issn = {1868-8969},
location = {Portland, OR, United States},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Z_2-Genus of graphs and minimum rank of partial symmetric matrices}},
doi = {10.4230/LIPICS.SOCG.2019.39},
volume = {129},
year = {2019},
}
@inbook{7453,
abstract = {We illustrate the ingredients of the state-of-the-art of model-based approach for the formal design and verification of cyber-physical systems. To capture the interaction between a discrete controller and its continuously evolving environment, we use the formal models of timed and hybrid automata. We explain the steps of modeling and verification in the tools Uppaal and SpaceEx using a case study based on a dual-chamber implantable pacemaker monitoring a human heart. We show how to design a model as a composition of components, how to construct models at varying levels of detail, how to establish that one model is an abstraction of another, how to specify correctness requirements using temporal logic, and how to verify that a model satisfies a logical requirement.},
author = {Alur, Rajeev and Giacobbe, Mirco and Henzinger, Thomas A and Larsen, Kim G. and Mikučionis, Marius},
booktitle = {Computing and Software Science},
editor = {Steffen, Bernhard and Woeginger, Gerhard},
isbn = {9783319919072},
issn = {0302-9743},
pages = {452--477},
publisher = {Springer Nature},
title = {{Continuous-time models for system design and analysis}},
doi = {10.1007/978-3-319-91908-9_22},
volume = {10000},
year = {2019},
}
@article{7459,
abstract = {We report the fabrication of BaTiO3-Ni magnetoelectric nanocomposites comprising of BaTiO3 nanotubes surrounded by Ni matrix. BaTiO3 nanotubes obtained from the hydrothermal transformation of TiO2 have both inner and outer surfaces, which facilitates greater magnetoelectric coupling with the surrounding Ni matrix. The magnetoelectric coupling was studied by measuring the piezoelectric behavior in the presence of an in-plane direct magnetic field. A higher magnetoelectric voltage coefficient of 110 mV/cm·Oe was obtained, because of better coupling between Ni and BaTiO3 through the walls of the nanotubes. Such nanocomposite developed directly on Ti substrate may lead to efficient fabrication of magnetoelectric devices.},
author = {Vadla, Samba Siva and Costanzo, Tommaso and John, Subish and Caruntu, Gabriel and Roy, Somnath C.},
issn = {1359-6462},
journal = {Scripta Materialia},
pages = {33--36},
publisher = {Elsevier},
title = {{Local probing of magnetoelectric coupling in BaTiO3-Ni 1–3 composites}},
doi = {10.1016/j.scriptamat.2018.09.003},
volume = {159},
year = {2019},
}
@article{7476,
abstract = {The sebaceous gland (SG) is an essential component of the skin, and SG dysfunction is debilitating1,2. Yet, the cellular bases for its origin, development and subsequent maintenance remain poorly understood. Here, we apply large-scale quantitative fate mapping to define the patterns of cell fate behaviour during SG development and maintenance. We show that the SG develops from a defined number of lineage-restricted progenitors that undergo a programme of independent and stochastic cell fate decisions. Following an expansion phase, equipotent progenitors transition into a phase of homeostatic turnover, which is correlated with changes in the mechanical properties of the stroma and spatial restrictions on gland size. Expression of the oncogene KrasG12D results in a release from these constraints and unbridled gland expansion. Quantitative clonal fate analysis reveals that, during this phase, the primary effect of the Kras oncogene is to drive a constant fate bias with little effect on cell division rates. These findings provide insight into the developmental programme of the SG, as well as the mechanisms that drive tumour progression and gland dysfunction.},
author = {Andersen, Marianne Stemann and Hannezo, Edouard B and Ulyanchenko, Svetlana and Estrach, Soline and Antoku, Yasuko and Pisano, Sabrina and Boonekamp, Kim E. and Sendrup, Sarah and Maimets, Martti and Pedersen, Marianne Terndrup and Johansen, Jens V. and Clement, Ditte L. and Feral, Chloe C. and Simons, Benjamin D. and Jensen, Kim B.},
issn = {1465-7392},
journal = {Nature Cell Biology},
number = {8},
pages = {924--932},
publisher = {Springer Nature},
title = {{Tracing the cellular dynamics of sebaceous gland development in normal and perturbed states}},
doi = {10.1038/s41556-019-0362-x},
volume = {21},
year = {2019},
}
@article{7548,
abstract = {Although the aggregation of the amyloid-β peptide (Aβ) into amyloid fibrils is a well-established hallmark of Alzheimer’s disease, the complex mechanisms linking this process to neurodegeneration are still incompletely understood. The nematode worm C. elegans is a valuable model organism through which to study these mechanisms because of its simple nervous system and its relatively short lifespan. Standard Aβ-based C. elegans models of Alzheimer’s disease are designed to study the toxic effects of the overexpression of Aβ in the muscle or nervous systems. However, the wide variety of effects associated with the tissue-level overexpression of Aβ makes it difficult to single out and study specific cellular mechanisms related to the onset of Alzheimer’s disease. Here, to better understand how to investigate the early events affecting neuronal signalling, we created a C. elegans model expressing Aβ42, the 42-residue form of Aβ, from a single-copy gene insertion in just one pair of glutamatergic sensory neurons, the BAG neurons. In behavioural assays, we found that the Aβ42-expressing animals displayed a subtle modulation of the response to CO2, compared to controls. Ca2+ imaging revealed that the BAG neurons in young Aβ42-expressing nematodes were activated more strongly than in control animals, and that neuronal activation remained intact until old age. Taken together, our results suggest that Aβ42-expression in this very subtle model of AD is sufficient to modulate the behavioural response but not strong enough to generate significant neurotoxicity, suggesting that slightly more aggressive perturbations will enable effectively studies of the links between the modulation of a physiological response and its associated neurotoxicity.},
author = {Sinnige, Tessa and Ciryam, Prashanth and Casford, Samuel and Dobson, Christopher M. and de Bono, Mario and Vendruscolo, Michele},
issn = {1932-6203},
journal = {PLOS ONE},
number = {5},
publisher = {Public Library of Science},
title = {{Expression of the amyloid-β peptide in a single pair of C. elegans sensory neurons modulates the associated behavioural response}},
doi = {10.1371/journal.pone.0217746},
volume = {14},
year = {2019},
}
@article{7547,
abstract = {The BH3-only family of proteins is key for initiating apoptosis in a variety of contexts, and may also contribute to non-apoptotic cellular processes. Historically, the nematode Caenorhabditis elegans has provided a powerful system for studying and identifying conserved regulators of BH3-only proteins. In C. elegans, the BH3-only protein egl-1 is expressed during development to cell-autonomously trigger most developmental cell deaths. Here we provide evidence that egl-1 is also transcribed after development in the sensory neuron pair URX without inducing apoptosis. We used genetic screening and epistasis analysis to determine that its transcription is regulated in URX by neuronal activity and/or in parallel by orthologs of Protein Kinase G and the Salt-Inducible Kinase family. Because several BH3-only family proteins are also expressed in the adult nervous system of mammals, we suggest that studying egl-1 expression in URX may shed light on mechanisms that regulate conserved family members in higher organisms.},
author = {Cohn, Jesse and Dwivedi, Vivek and Valperga, Giulio and Zarate, Nicole and de Bono, Mario and Horvitz, H. Robert and Pierce, Jonathan T.},
issn = {2160-1836},
journal = {G3: Genes, Genomes, Genetics},
number = {11},
pages = {3703--3714},
publisher = {Genetics Society of America},
title = {{Activity-dependent regulation of the proapoptotic BH3-only gene egl-1 in a living neuron pair in Caenorhabditis elegans}},
doi = {10.1534/g3.119.400654},
volume = {9},
year = {2019},
}
@article{7550,
abstract = {We consider an optimal control problem for an abstract nonlinear dissipative evolution equation. The differential constraint is penalized by augmenting the target functional by a nonnegative global-in-time functional which is null-minimized in the evolution equation is satisfied. Different variational settings are presented, leading to the convergence of the penalization method for gradient flows, noncyclic and semimonotone flows, doubly nonlinear evolutions, and GENERIC systems. },
author = {Portinale, Lorenzo and Stefanelli, Ulisse},
issn = {1343-4373},
journal = {Advances in Mathematical Sciences and Applications},
number = {2},
pages = {425--447},
publisher = {Gakko Tosho},
title = {{Penalization via global functionals of optimal-control problems for dissipative evolution}},
volume = {28},
year = {2019},
}
@unpublished{7552,
abstract = {There is increasing evidence that protein binding to specific sites along DNA can activate the reading out of genetic information without coming into direct physical contact with the gene. There also is evidence that these distant but interacting sites are embedded in a liquid droplet of proteins which condenses out of the surrounding solution. We argue that droplet-mediated interactions can account for crucial features of gene regulation only if the droplet is poised at a non-generic point in its phase diagram. We explore a minimal model that embodies this idea, show that this model has a natural mechanism for self-tuning, and suggest direct experimental tests. },
author = {Bialek, William and Gregor, Thomas and Tkačik, Gašper},
booktitle = {arXiv:1912.08579},
pages = {5},
publisher = {ArXiv},
title = {{Action at a distance in transcriptional regulation}},
year = {2019},
}
@inproceedings{7576,
abstract = {We present the results of a friendly competition for formal verification of continuous and hybrid systems with nonlinear continuous dynamics. The friendly competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2019. In this year, 6 tools Ariadne, CORA, DynIbex, Flow*, Isabelle/HOL, and JuliaReach (in alphabetic order) participated. They are applied to solve reachability analysis problems on four benchmark problems, one of them with hybrid dynamics. We do not rank the tools based on the results, but show the current status and discover the potential advantages of different tools.},
author = {Immler, Fabian and Althoff, Matthias and Benet, Luis and Chapoutot, Alexandre and Chen, Xin and Forets, Marcelo and Geretti, Luca and Kochdumper, Niklas and Sanders, David P. and Schilling, Christian},
booktitle = {EPiC Series in Computing},
issn = {23987340},
location = {Montreal, Canada},
pages = {41--61},
publisher = {EasyChair Publications},
title = {{ARCH-COMP19 Category Report: Continuous and hybrid systems with nonlinear dynamics}},
doi = {10.29007/m75b},
volume = {61},
year = {2019},
}
@unpublished{7627,
abstract = {Electrodepositing insulating and insoluble Li2O2 is the key process during discharge of aprotic Li-O2 batteries and determines rate, capacity, and reversibility. Current understanding states that the partition between surface adsorbed and solvated LiO2 governs whether Li2O2 grows as surface film, leading to low capacity even at low rates, or in solution, leading to particles and high capacities. Here we show that Li2O2 forms to the widest extent as particles via solution mediated LiO2 disproportionation. We describe a unified Li2O2 growth model that conclusively explains capacity limitations across the whole range of electrolytes. Deciding for particle morphology, achievable rate and capacities are species mobilities, electrode specific surface area (determining true areal rate) and the concentration distribution of associated LiO2 in solution. Provided that species mobilities and surface are high, high, capacities are possible even with low-donor-number electrolytes, previously considered prototypical for low capacity via surface growth. The tools for these insights are microscopy, hydrodynamic voltammetry, a numerical reaction model, and in situ small/wide angle X-ray scattering (SAXS/WAXS). Combined with sophisticated data analysis, SAXS allows retrieving rich quantitative information from complex multi-phase systems. On a wider perspective, this SAXS method is a powerful in situ metrology with atomic to sub-micron resolution to study mechanisms in complex electrochemical systems and beyond. },
author = {Prehal, Christian and Samojlov, Aleksej and Nachtnebel, Manfred and Kriechbaum, Manfred and Amenitsch, Heinz and Freunberger, Stefan Alexander},
pages = {50},
publisher = {ChemRxiv},
title = {{A revised O2 reduction model in Li-O2 batteries as revealed by in situ small angle X-ray scattering}},
year = {2019},
}
@article{7710,
abstract = {The number of human genomes being genotyped or sequenced increases exponentially and efficient haplotype estimation methods able to handle this amount of data are now required. Here we present a method, SHAPEIT4, which substantially improves upon other methods to process large genotype and high coverage sequencing datasets. It notably exhibits sub-linear running times with sample size, provides highly accurate haplotypes and allows integrating external phasing information such as large reference panels of haplotypes, collections of pre-phased variants and long sequencing reads. We provide SHAPEIT4 in an open source format and demonstrate its performance in terms of accuracy and running times on two gold standard datasets: the UK Biobank data and the Genome In A Bottle.},
author = {Delaneau, Olivier and Zagury, Jean-François and Robinson, Matthew Richard and Marchini, Jonathan L. and Dermitzakis, Emmanouil T.},
issn = {2041-1723},
journal = {Nature Communications},
publisher = {Springer Nature},
title = {{Accurate, scalable and integrative haplotype estimation}},
doi = {10.1038/s41467-019-13225-y},
volume = {10},
year = {2019},
}
@article{7711,
abstract = {The nature and extent of mitochondrial DNA variation in a population and how it affects traits is poorly understood. Here we resequence the mitochondrial genomes of 169 Drosophila Genetic Reference Panel lines, identifying 231 variants that stratify along 12 mitochondrial haplotypes. We identify 1,845 cases of mitonuclear allelic imbalances, thus implying that mitochondrial haplotypes are reflected in the nuclear genome. However, no major fitness effects are associated with mitonuclear imbalance, suggesting that such imbalances reflect population structure at the mitochondrial level rather than genomic incompatibilities. Although mitochondrial haplotypes have no direct impact on mitochondrial respiration, some haplotypes are associated with stress- and metabolism-related phenotypes, including food intake in males. Finally, through reciprocal swapping of mitochondrial genomes, we demonstrate that a mitochondrial haplotype associated with high food intake can rescue a low food intake phenotype. Together, our findings provide new insight into population structure at the mitochondrial level and point to the importance of incorporating mitochondrial haplotypes in genotype–phenotype relationship studies.},
author = {Bevers, Roel P. J. and Litovchenko, Maria and Kapopoulou, Adamandia and Braman, Virginie S. and Robinson, Matthew Richard and Auwerx, Johan and Hollis, Brian and Deplancke, Bart},
issn = {2522-5812},
journal = {Nature Metabolism},
number = {12},
pages = {1226--1242},
publisher = {Springer Nature},
title = {{Mitochondrial haplotypes affect metabolic phenotypes in the Drosophila Genetic Reference Panel}},
doi = {10.1038/s42255-019-0147-3},
volume = {1},
year = {2019},
}
@unpublished{7782,
abstract = {As genome-wide association studies (GWAS) increased in size, numerous gene-environment interactions (GxE) have been discovered, many of which however explore only one environment at a time and may suffer from statistical artefacts leading to biased interaction estimates. Here we propose a maximum likelihood method to estimate the contribution of GxE to complex traits taking into account all interacting environmental variables at the same time, without the need to measure any. This is possible because GxE induces fluctuations in the conditional trait variance, the extent of which depends on the strength of GxE. The approach can be applied to continuous outcomes and for single SNPs or genetic risk scores (GRS). Extensive simulations demonstrated that our method yields unbiased interaction estimates and excellent confidence interval coverage. We also offer a strategy to distinguish specific GxE from general heteroscedasticity (scale effects). Applying our method to 32 complex traits in the UK Biobank reveals that for body mass index (BMI) the GRSxE explains an additional 1.9% variance on top of the 5.2% GRS contribution. However, this interaction is not specific to the GRS and holds for any variable similarly correlated with BMI. On the contrary, the GRSxE interaction effect for leg impedance Embedded Image is significantly (P < 10−56) larger than it would be expected for a similarly correlated variable Embedded Image. We showed that our method could robustly detect the global contribution of GxE to complex traits, which turned out to be substantial for certain obesity measures.},
author = {Sulc, Jonathan and Mounier, Ninon and Günther, Felix and Winkler, Thomas and Wood, Andrew R. and Frayling, Timothy M. and Heid, Iris M. and Robinson, Matthew Richard and Kutalik, Zoltán},
booktitle = {bioRxiv},
pages = {20},
publisher = {Cold Spring Harbor Laboratory},
title = {{Maximum likelihood method quantifies the overall contribution of gene-environment interaction to continuous traits: An application to complex traits in the UK Biobank}},
year = {2019},
}
@article{8013,
author = {Currin, Christopher B. and Khoza, Phumlani N. and Antrobus, Alexander D. and Latham, Peter E. and Vogels, Tim P and Raimondo, Joseph V.},
issn = {1553-7358},
journal = {PLOS Computational Biology},
number = {7},
publisher = {Public Library of Science},
title = {{Think: Theory for Africa}},
doi = {10.1371/journal.pcbi.1007049},
volume = {15},
year = {2019},
}
@article{8014,
abstract = {Working memory, the ability to keep recently accessed information available for immediate manipulation, has been proposed to rely on two mechanisms that appear difficult to reconcile: self-sustained neural firing, or the opposite—activity-silent synaptic traces. Here we review and contrast models of these two mechanisms, and then show that both phenomena can co-exist within a unified system in which neurons hold information in both activity and synapses. Rapid plasticity in flexibly-coding neurons allows features to be bound together into objects, with an important emergent property being the focus of attention. One memory item is held by persistent activity in an attended or “focused” state, and is thus remembered better than other items. Other, previously attended items can remain in memory but in the background, encoded in activity-silent synaptic traces. This dual functional architecture provides a unified common mechanism accounting for a diversity of perplexing attention and memory effects that have been hitherto difficult to explain in a single theoretical framework.},
author = {Manohar, Sanjay G. and Zokaei, Nahid and Fallon, Sean J. and Vogels, Tim P and Husain, Masud},
issn = {0149-7634},
journal = {Neuroscience and Biobehavioral Reviews},
pages = {1--12},
publisher = {Elsevier },
title = {{Neural mechanisms of attending to items in working memory}},
doi = {10.1016/j.neubiorev.2019.03.017},
volume = {101},
year = {2019},
}
@inproceedings{8175,
abstract = {We study edge asymptotics of poissonized Plancherel-type measures on skew Young diagrams (integer partitions). These measures can be seen as generalizations of those studied by Baik--Deift--Johansson and Baik--Rains in resolving Ulam's problem on longest increasing subsequences of random permutations and the last passage percolation (corner growth) discrete versions thereof. Moreover they interpolate between said measures and the uniform measure on partitions. In the new KPZ-like 1/3 exponent edge scaling limit with logarithmic corrections, we find new probability distributions generalizing the classical Tracy--Widom GUE, GOE and GSE distributions from the theory of random matrices.},
author = {Betea, Dan and Bouttier, Jérémie and Nejjar, Peter and Vuletíc, Mirjana},
booktitle = {Proceedings on the 31st International Conference on Formal Power Series and Algebraic Combinatorics},
location = {Ljubljana, Slovenia},
publisher = {Formal Power Series and Algebraic Combinatorics},
title = {{New edge asymptotics of skew Young diagrams via free boundaries}},
year = {2019},
}
@article{8228,
abstract = {Background: Atopics have a lower risk for malignancies, and IgE targeted to tumors is superior to IgG in fighting cancer. Whether IgE-mediated innate or adaptive immune surveillance can confer protection against tumors remains unclear.
Objective: We aimed to investigate the effects of active and passive immunotherapy to the tumor-associated antigen HER-2 in three murine models differing in Epsilon-B-cell-receptor expression affecting the levels of expressed IgE.
Methods: We compared the levels of several serum specific anti-HER-2 antibodies (IgE, IgG1, IgG2a, IgG2b, IgA) and the survival rates in low-IgE ΔM1M2 mice lacking the transmembrane/cytoplasmic domain of Epsilon-B-cell-receptors expressing reduced IgE levels, high-IgE KN1 mice expressing chimeric Epsilon-Gamma1-B-cell receptors with 4-6-fold elevated serum IgE levels, and wild type (WT) BALB/c. Prior engrafting mice with D2F2/E2 mammary tumors overexpressing HER-2, mice were vaccinated with HER-2 or vehicle control PBS using the Th2-adjuvant Al(OH)3 (active immunotherapy), or treated with the murine anti-HER-2 IgG1 antibody 4D5 (passive immunotherapy).
Results: Overall, among the three strains of mice, HER-2 vaccination induced significantly higher levels of HER-2 specific IgE and IgG1 in high-IgE KN1, while low-IgE ΔM1M2 mice had higher IgG2a levels. HER-2 vaccination and passive immunotherapy prolonged the survival in tumor-grafted WT and low-IgE ΔM1M2 strains compared with treatment controls; active vaccination provided the highest benefit. Notably, untreated high-IgE KN1 mice displayed the longest survival of all strains, which could not be further extended by active or passive immunotherapy.
Conclusion: Active and passive immunotherapies prolong survival in wild type and low-IgE ΔM1M2 mice engrafted with mammary tumors. High-IgE KN1 mice have an innate survival benefit following tumor challenge.},
author = {Singer, Josef and Achatz-Straussberger, Gertrude and Bentley-Lukschal, Anna and Fazekas-Singer, Judit and Achatz, Gernot and Karagiannis, Sophia N. and Jensen-Jarolim, Erika},
issn = {1939-4551},
journal = {World Allergy Organization Journal},
number = {7},
publisher = {Elsevier},
title = {{AllergoOncology: High innate IgE levels are decisive for the survival of cancer-bearing mice}},
doi = {10.1016/j.waojou.2019.100044},
volume = {12},
year = {2019},
}
@article{8229,
abstract = {Food proteins may get nitrated by various exogenous or endogenous mechanisms. As individuals might get recurrently exposed to nitrated proteins via daily diet, we aimed to investigate the effect of repeatedly ingested nitrated food proteins on the subsequent immune response in non-allergic and allergic mice using the milk allergen beta-lactoglobulin (BLG) as model food protein in a mouse model. Evaluating the presence of nitrated proteins in food, we could detect 3-nitrotyrosine (3-NT) in extracts of different foods and in stomach content extracts of non-allergic mice under physiological conditions. Chemically nitrated BLG (BLGn) exhibited enhanced susceptibility to degradation in simulated gastric fluid experiments compared to untreated BLG (BLGu). Gavage of BLGn to non-allergic animals increased interferon-γ and interleukin-10 release of stimulated spleen cells and led to the formation of BLG-specific serum IgA. Allergic mice receiving three oral gavages of BLGn had higher levels of mouse mast cell protease-1 (mMCP-1) compared to allergic mice receiving BLGu. Regardless of the preceding immune status, non-allergic or allergic, repeatedly ingested nitrated food proteins seem to considerably influence the subsequent immune response.},
author = {Ondracek, Anna S. and Heiden, Denise and Oostingh, Gertie J. and Fuerst, Elisabeth and Fazekas-Singer, Judit and Bergmayr, Cornelia and Rohrhofer, Johanna and Jensen-Jarolim, Erika and Duschl, Albert and Untersmayr, Eva},
issn = {2072-6643},
journal = {Nutrients},
number = {10},
publisher = {MDPI},
title = {{Immune effects of the nitrated food allergen beta-lactoglobulin in an experimental food allergy model}},
doi = {10.3390/nu11102463},
volume = {11},
year = {2019},
}
@article{8227,
author = {Ilieva, Kristina M. and Fazekas-Singer, Judit and Bax, Heather J. and Crescioli, Silvia and Montero‐Morales, Laura and Mele, Silvia and Sow, Heng Sheng and Stavraka, Chara and Josephs, Debra H. and Spicer, James F. and Steinkellner, Herta and Jensen‐Jarolim, Erika and Tutt, Andrew N. J. and Karagiannis, Sophia N.},
issn = {0105-4538},
journal = {Allergy},
number = {10},
pages = {1985--1989},
publisher = {Wiley},
title = {{AllergoOncology: Expression platform development and functional profiling of an anti‐HER2 IgE antibody}},
doi = {10.1111/all.13818},
volume = {74},
year = {2019},
}
@article{8263,
abstract = {Background: The genus Streptococcus comprises pathogens that strongly influence the health of humans and animals. Genome sequencing of multiple Streptococcus strains demonstrated high variability in gene content and order even in closely related strains of the same species and created a newly emerged object for genomic analysis, the pan-genome. Here we analysed the genome evolution of 25 strains of Streptococcus suis, 50 strains of Streptococcus pyogenes and 28 strains of Streptococcus pneumoniae.
Results: Fractions of the pan-genome, unique, periphery, and universal genes differ in size, functional composition, the level of nucleotide substitutions, and predisposition to horizontal gene transfer and genomic rearrangements. The density of substitutions in intergenic regions appears to be correlated with selection acting on adjacent genes, implying that more conserved genes tend to have more conserved regulatory regions.
The total pan-genome of the genus is open, but only due to strain-specific genes, whereas other pan-genome fractions reach saturation. We have identified the set of genes with phylogenies inconsistent with species and non-conserved location in the chromosome; these genes are rare in at least one species and have likely experienced recent horizontal transfer between species. The strain-specific fraction is enriched with mobile elements and hypothetical proteins, but also contains a number of candidate virulence-related genes, so it may have a strong impact on adaptability and pathogenicity.
Mapping the rearrangements to the phylogenetic tree revealed large parallel inversions in all species. A parallel inversion of length 15 kB with breakpoints formed by genes encoding surface antigen proteins PhtD and PhtB in S. pneumoniae leads to replacement of gene fragments that likely indicates the action of an antigen variation mechanism.
Conclusions: Members of genus Streptococcus have a highly dynamic, open pan-genome, that potentially confers them with the ability to adapt to changing environmental conditions, i.e. antibiotic resistance or transmission between different hosts. Hence, integrated analysis of all aspects of genome evolution is important for the identification of potential pathogens and design of drugs and vaccines.},
author = {Shelyakin, Pavel V. and Bochkareva, Olga and Karan, Anna A. and Gelfand, Mikhail S.},
issn = {1471-2148},
journal = {BMC Evolutionary Biology},
publisher = {Springer Nature},
title = {{Micro-evolution of three Streptococcus species: Selection, antigenic variation, and horizontal gene inflow}},
doi = {10.1186/s12862-019-1403-6},
volume = {19},
year = {2019},
}
@inproceedings{8296,
abstract = {While showing great promise, smart contracts are difficult to program correctly, as they need a deep understanding of cryptography and distributed algorithms, and offer limited functionality, as they have to be deterministic and cannot operate on secret data. In this paper we present Protean, a general-purpose decentralized computing platform that addresses these limitations by moving from a monolithic execution model, where all participating nodes store all the state and execute every computation, to a modular execution-model. Protean employs secure specialized modules, called functional units, for building decentralized applications that are currently insecure or impossible to implement with smart contracts. Each functional unit is a distributed system that provides a special-purpose functionality by exposing atomic transactions to the smart-contract developer. Combining these transactions into arbitrarily-defined workflows, developers can build a larger class of decentralized applications, such as provably-secure and fair lotteries or e-voting.},
author = {Alp, Enis Ceyhun and Kokoris Kogias, Eleftherios and Fragkouli, Georgia and Ford, Bryan},
booktitle = {Proceedings of the Workshop on Hot Topics in Operating Systems},
isbn = {9781450367271},
location = {Bertinoro, Italy},
pages = {105--112},
publisher = {ACM},
title = {{Rethinking general-purpose decentralized computing}},
doi = {10.1145/3317550.3321448},
year = {2019},
}
@unpublished{8304,
abstract = {Enabling secure communication across distributed systems is usually studied under the assumption of trust between the different systems and an external adversary trying to compromise the messages. With the appearance of distributed ledgers or blockchains, numerous protocols have emerged, which attempt to achieve trustless communication between distrusting ledgers and participants. Cross-chain communication (CCC) thereby plays a fundamental role in cryptocurrency exchanges, sharding, bootstrapping of new and feature-extension of existing distributed ledgers. Unfortunately, existing proposals are designed ad-hoc for specific use-cases, making it hard to gain confidence on their correctness and composability.
We provide the first systematic exposition of protocols for CCC. First, we formalize the underlying research problem and show that CCC is impossible without a trusted third party, contrary to common beliefs in the blockchain community. We then develop a framework to evaluate existing and to design new cross-chain protocols. The framework is based on the use case, the trust model, and the security assumptions of interlinked blockchains. Finally, we identify security and privacy challenges faced by protocols in the cross-chain setting.
This Systematization of Knowledge (SoK) offers a comprehensive guide for designing protocols bridging the numerous distributed ledgers available today. It aims to facilitate clearer communication between academia and industry in the field.},
author = {Zamyatin, Alexei and Al-Bassam, Mustafa and Zindros, Dionysis and Kokoris Kogias, Eleftherios and Moreno-Sanchez, Pedro and Kiayias, Aggelos and Knottenbelt, William J.},
booktitle = {Cryptology ePrint Archive},
title = {{SoK: Communication across distributed ledgers}},
year = {2019},
}
@unpublished{8303,
abstract = {ByzCoin, a promising alternative of Bitcoin, is a scalable consensus protocol used as a building block of many research and enterprise-level decentralized systems. In this paper, we show that ByzCoin is unsuitable for deployment in an anopen, adversarial network and instead introduceMOTOR. MOTORis designed as a secure, robust, and scalable consensus suitable for permissionless sharded blockchains. MOTORachieves these properties by making four key design choices: (a) it prioritizes robustness in adversarial environments while maintaining adequate scalability, (b) it employees provably correct cryptography that resists DoS attacks from individual nodes, (c) it deploys unpredictable rotating leaders to defend against mildly-adaptive adversaries and prevents censorship, and (d) it creates an incentive compatible reward mechanism. These choices are materialized as (a) a “rotating subleader” communication pattern that balances the scalability needs with the robustness requirements under failures, (b) deployment of provable secure BLS multi-signatures, (c) use of deterministic thresh-old signatures as a source of randomness and (d) careful design of the reward allocation mechanism. We have implemented MOTORand compare it withByzCoin. We show that MOTORcan scale similar to ByzCoin with an at most2xoverhead whereas it maintains good performance even under high-percentage of faults, unlike ByzCoin.},
author = {Kokoris Kogias, Eleftherios},
booktitle = {Cryptology ePrint Archive},
title = {{Robust and scalable consensus for sharded distributed ledgers}},
year = {2019},
}
@phdthesis{8311,
abstract = {One of the core promises of blockchain technology is that of enabling trustworthy data dissemination in a trustless environment. What current blockchain systems deliver, however, is slow dissemination of public data, rendering blockchain technology unusable in settings where latency, transaction capacity, or data confidentiality are important. In this thesis we focus on providing solutions on two of the most pressing problems blockchain technology currently faces: scalability and data confidentiality. To address the scalability issue, we present OMNILEDGER, a novel scale-out distributed ledger that preserves long-term security under permissionless operation. It ensures security and correctness by using a bias-resistant public-randomness protocol for choosing large, statistically representative shards that process transactions, and by introducing an efficient cross-shard commit protocol that atomically handles transactions affecting multiple shards. To enable secure sharing of confidential data we present CALYPSO, the first fully decentralized, auditable access-control framework for secure blockchain-based data sharing which builds upon two abstractions. First, on-chain secrets enable collective management of (verifiably shared) secrets under a Byzantine adversary where an access-control blockchain enforces user-specific access rules and a secret-management cothority administers encrypted data. Second, skipchain-based identity and access management enables efficient administration of dynamic, sovereign identities and access policies and, in particular, permits clients to maintain long-term relationships with respect to evolving user identities thanks to the trust-delegating forward links of skipchains. In order to build OMNILEDGER and CALYPSO, we first build a set of tools for efficient decentralization, which are presented in Part II of this dissertation. These tools can be used in decentralized and distributed systems to achieve (1) scalable consensus (BYZCOIN), (2) bias- resistant distributed randomness creations (RANDHOUND), and (3) relationship-keeping between independently updating communication endpoints (SKIPCHAINIAC). Although we use this tools in the scope off this thesis, they can be (and already have been) used in a far wider scope.},
author = {Kokoris Kogias, Eleftherios},
pages = {244},
publisher = {École Polytechnique Fédérale de Lausanne},
title = {{Secure, confidential blockchains providing high throughput and low latency}},
doi = {10.5075/epfl-thesis-7101},
year = {2019},
}
@unpublished{8314,
abstract = {Off-chain protocols (channels) are a promising solution to the scalability and privacy challenges of blockchain payments. Current proposals, however, require synchrony assumptions to preserve the safety of a channel, leaking to an adversary the exact amount of time needed to control the network for a successful attack. In this paper, we introduce Brick, the first payment channel that remains secure under network asynchrony and concurrently provides correct incentives. The core idea is to incorporate the conflict resolution process within the channel by introducing a rational committee of external parties, called Wardens. Hence, if a party wants to close a channel unilaterally, it can only get the committee's approval for the last valid state. Brick provides sub-second latency because it does not employ heavy-weight consensus. Instead,
Brick uses consistent broadcast to announce updates and close the channel, a light-weight abstraction that is powerful enough to preserve safety and liveness to any rational parties. Furthermore, we consider permissioned blockchains, where the additional property of auditability might be desired for regulatory purposes. We introduce Brick+, an off-chain construction that provides auditability on top of Brick without conflicting with its privacy guarantees. We formally define the properties our payment channel construction should fulfill, and prove that both Brick and Brick+ satisfy them. We also design incentives for Brick such that honest and rational behavior aligns. Finally, we provide a reference implementation of the smart contracts in Solidity.},
author = {Avarikioti, Georgia and Kokoris Kogias, Eleftherios and Wattenhofer, Roger and Zindros, Dionysis},
booktitle = {arXiv},
title = {{Brick: Asynchronous payment channels}},
year = {2019},
}
@unpublished{8315,
abstract = {Sharding distributed ledgers is the most promising on-chain solution for scaling blockchain technology. In this work, we define and analyze the properties a sharded distributed ledger should fulfill. More specifically, we show that a sharded blockchain cannot be scalable under a fully adaptive adversary, but it can scale up to $O(n/\log n)$ under an epoch-adaptive adversary. This is possible only if the distributed ledger creates succinct proofs of the valid state updates at the end of each epoch. Our model builds upon and extends the Bitcoin backbone protocol by defining consistency and
scalability. Consistency encompasses the need for atomic execution of cross-shard transactions to preserve safety, whereas scalability encapsulates the speedup a sharded system can gain in comparison to a non-sharded system. In
order to show the power of our framework, we analyze the most prominent sharded blockchains and either prove their correctness (OmniLedger, RapidChain) under our model or pinpoint where they fail to balance the consistency and
scalability requirements (Elastico, Monoxide). },
author = {Avarikioti, Georgia and Kokoris Kogias, Eleftherios and Wattenhofer, Roger},
booktitle = {arXiv},
title = {{Divide and scale: Formalization of distributed ledger sharding protocols}},
year = {2019},
}
@misc{8313,
abstract = {The present invention concerns a computer-implemented method for secure data exchange between a sender (A) and a recipient (B), wherein the method is performed by the sender (A) and comprises encrypting data using a symmetric key k, creating a write transaction T W , wherein the write transaction T W comprises information usable to derive the symmetric key k and an access policy identifying the recipient (B) as being allowed to decrypt the encrypted data, providing the recipient (B) access to the encrypted data, and sending the write transaction T W to a first group of servers (AC) for being stored in a blockchain data structure maintained by the first group of servers (AC).},
author = {Ford, Bryan and Gasser, Linus and Kokoris Kogias, Eleftherios and Janovic, Philipp},
title = {{Methods and systems for secure data exchange}},
year = {2019},
}
@article{8405,
abstract = {Atomic-resolution structure determination is crucial for understanding protein function. Cryo-EM and NMR spectroscopy both provide structural information, but currently cryo-EM does not routinely give access to atomic-level structural data, and, generally, NMR structure determination is restricted to small (<30 kDa) proteins. We introduce an integrated structure determination approach that simultaneously uses NMR and EM data to overcome the limits of each of these methods. The approach enables structure determination of the 468 kDa large dodecameric aminopeptidase TET2 to a precision and accuracy below 1 Å by combining secondary-structure information obtained from near-complete magic-angle-spinning NMR assignments of the 39 kDa-large subunits, distance restraints from backbone amides and ILV methyl groups, and a 4.1 Å resolution EM map. The resulting structure exceeds current standards of NMR and EM structure determination in terms of molecular weight and precision. Importantly, the approach is successful even in cases where only medium-resolution cryo-EM data are available.},
author = {Gauto, Diego F. and Estrozi, Leandro F. and Schwieters, Charles D. and Effantin, Gregory and Macek, Pavel and Sounier, Remy and Sivertsen, Astrid C. and Schmidt, Elena and Kerfah, Rime and Mas, Guillaume and Colletier, Jacques-Philippe and Güntert, Peter and Favier, Adrien and Schoehn, Guy and Schanda, Paul and Boisbouvier, Jerome},
issn = {2041-1723},
journal = {Nature Communications},
keywords = {General Biochemistry, Genetics and Molecular Biology, General Physics and Astronomy, General Chemistry},
publisher = {Springer Nature},
title = {{Integrated NMR and cryo-EM atomic-resolution structure determination of a half-megadalton enzyme complex}},
doi = {10.1038/s41467-019-10490-9},
volume = {10},
year = {2019},
}
@article{8406,
abstract = {Coordinated conformational transitions in oligomeric enzymatic complexes modulate function in response to substrates and play a crucial role in enzyme inhibition and activation. Caseinolytic protease (ClpP) is a tetradecameric complex, which has emerged as a drug target against multiple pathogenic bacteria. Activation of different ClpPs by inhibitors has been independently reported from drug development efforts, but no rationale for inhibitor-induced activation has been hitherto proposed. Using an integrated approach that includes x-ray crystallography, solid- and solution-state nuclear magnetic resonance, molecular dynamics simulations, and isothermal titration calorimetry, we show that the proteasome inhibitor bortezomib binds to the ClpP active-site serine, mimicking a peptide substrate, and induces a concerted allosteric activation of the complex. The bortezomib-activated conformation also exhibits a higher affinity for its cognate unfoldase ClpX. We propose a universal allosteric mechanism, where substrate binding to a single subunit locks ClpP into an active conformation optimized for chaperone association and protein processive degradation.},
author = {Felix, Jan and Weinhäupl, Katharina and Chipot, Christophe and Dehez, François and Hessel, Audrey and Gauto, Diego F. and Morlot, Cecile and Abian, Olga and Gutsche, Irina and Velazquez-Campoy, Adrian and Schanda, Paul and Fraga, Hugo},
issn = {2375-2548},
journal = {Science Advances},
number = {9},
publisher = {American Association for the Advancement of Science},
title = {{Mechanism of the allosteric activation of the ClpP protease machinery by substrates and active-site inhibitors}},
doi = {10.1126/sciadv.aaw3818},
volume = {5},
year = {2019},
}
@article{8413,
abstract = {NMR relaxation dispersion methods provide a holistic way to observe microsecond time-scale protein backbone motion both in solution and in the solid state. Different nuclei (1H and 15N) and different relaxation dispersion techniques (Bloch–McConnell and near-rotary-resonance) give complementary information about the amplitudes and time scales of the conformational dynamics and provide comprehensive insights into the mechanistic details of the structural rearrangements. In this paper, we exemplify the benefits of the combination of various solution- and solid-state relaxation dispersion methods on a microcrystalline protein (α-spectrin SH3 domain), for which we are able to identify and model the functionally relevant conformational rearrangements around the ligand recognition loop occurring on multiple microsecond time scales. The observed loop motions suggest that the SH3 domain exists in a binding-competent conformation in dynamic equilibrium with a sterically impaired ground-state conformation both in solution and in crystalline form. This inherent plasticity between the interconverting macrostates is compatible with a conformational-preselection model and provides new insights into the recognition mechanisms of SH3 domains.},
author = {Rovó, Petra and Smith, Colin A. and Gauto, Diego and de Groot, Bert L. and Schanda, Paul and Linser, Rasmus},
issn = {0002-7863},
journal = {Journal of the American Chemical Society},
keywords = {Colloid and Surface Chemistry, Biochemistry, General Chemistry, Catalysis},
number = {2},
pages = {858--869},
publisher = {American Chemical Society},
title = {{Mechanistic insights into microsecond time-scale motion of solid proteins using complementary 15N and 1H relaxation dispersion techniques}},
doi = {10.1021/jacs.8b09258},
volume = {141},
year = {2019},
}