@article{14426, abstract = {To meet the physiological demands of the body, organs need to establish a functional tissue architecture and adequate size as the embryo develops to adulthood. In the liver, uni- and bipotent progenitor differentiation into hepatocytes and biliary epithelial cells (BECs), and their relative proportions, comprise the functional architecture. Yet, the contribution of individual liver progenitors at the organ level to both fates, and their specific proportion, is unresolved. Combining mathematical modelling with organ-wide, multispectral FRaeppli-NLS lineage tracing in zebrafish, we demonstrate that a precise BEC-to-hepatocyte ratio is established (i) fast, (ii) solely by heterogeneous lineage decisions from uni- and bipotent progenitors, and (iii) independent of subsequent cell type–specific proliferation. Extending lineage tracing to adulthood determined that embryonic cells undergo spatially heterogeneous three-dimensional growth associated with distinct environments. Strikingly, giant clusters comprising almost half a ventral lobe suggest lobe-specific dominant-like growth behaviours. We show substantial hepatocyte polyploidy in juveniles representing another hallmark of postembryonic liver growth. Our findings uncover heterogeneous progenitor contributions to tissue architecture-defining cell type proportions and postembryonic organ growth as key mechanisms forming the adult liver.}, author = {Unterweger, Iris A. and Klepstad, Julie and Hannezo, Edouard B and Lundegaard, Pia R. and Trusina, Ala and Ober, Elke A.}, issn = {1545-7885}, journal = {PLoS Biology}, number = {10}, publisher = {Public Library of Science}, title = {{Lineage tracing identifies heterogeneous hepatoblast contribution to cell lineages and postembryonic organ growth dynamics}}, doi = {10.1371/journal.pbio.3002315}, volume = {21}, year = {2023}, } @inproceedings{14428, abstract = {Suppose we have two hash functions h1 and h2, but we trust the security of only one of them. To mitigate this worry, we wish to build a hash combiner Ch1,h2 which is secure so long as one of the underlying hash functions is. This question has been well-studied in the regime of collision resistance. In this case, concatenating the two hash function outputs clearly works. Unfortunately, a long series of works (Boneh and Boyen, CRYPTO’06; Pietrzak, Eurocrypt’07; Pietrzak, CRYPTO’08) showed no (noticeably) shorter combiner for collision resistance is possible. In this work, we revisit this pessimistic state of affairs, motivated by the observation that collision-resistance is insufficient for many interesting applications of cryptographic hash functions anyway. We argue the right formulation of the “hash combiner” is to build what we call random oracle (RO) combiners, utilizing stronger assumptions for stronger constructions. Indeed, we circumvent the previous lower bounds for collision resistance by constructing a simple length-preserving RO combiner C˜h1,h2Z1,Z2(M)=h1(M,Z1)⊕h2(M,Z2),where Z1,Z2 are random salts of appropriate length. We show that this extra randomness is necessary for RO combiners, and indeed our construction is somewhat tight with this lower bound. On the negative side, we show that one cannot generically apply the composition theorem to further replace “monolithic” hash functions h1 and h2 by some simpler indifferentiable construction (such as the Merkle-Damgård transformation) from smaller components, such as fixed-length compression functions. Finally, despite this issue, we directly prove collision resistance of the Merkle-Damgård variant of our combiner, where h1 and h2 are replaced by iterative Merkle-Damgård hashes applied to a fixed-length compression function. Thus, we can still subvert the concatenation barrier for collision-resistance combiners while utilizing practically small fixed-length components underneath.}, author = {Dodis, Yevgeniy and Ferguson, Niels and Goldin, Eli and Hall, Peter and Pietrzak, Krzysztof Z}, booktitle = {43rd Annual International Cryptology Conference}, isbn = {9783031385445}, issn = {1611-3349}, location = {Santa Barbara, CA, United States}, pages = {514--546}, publisher = {Springer Nature}, title = {{Random oracle combiners: Breaking the concatenation barrier for collision-resistance}}, doi = {10.1007/978-3-031-38545-2_17}, volume = {14082}, year = {2023}, } @inbook{13052, abstract = {Imaging of the immunological synapse (IS) between dendritic cells (DCs) and T cells in suspension is hampered by suboptimal alignment of cell-cell contacts along the vertical imaging plane. This requires optical sectioning that often results in unsatisfactory resolution in time and space. Here, we present a workflow where DCs and T cells are confined between a layer of glass and polydimethylsiloxane (PDMS) that orients the cells along one, horizontal imaging plane, allowing for fast en-face-imaging of the DC-T cell IS.}, author = {Leithner, Alexander F and Merrin, Jack and Sixt, Michael K}, booktitle = {The Immune Synapse}, editor = {Baldari, Cosima and Dustin, Michael}, isbn = {9781071631348}, issn = {1940-6029}, pages = {137--147}, publisher = {Springer Nature}, title = {{En-Face Imaging of T Cell-Dendritic Cell Immunological Synapses}}, doi = {10.1007/978-1-0716-3135-5_9}, volume = {2654}, year = {2023}, } @article{12406, abstract = {Let X be a sufficiently large positive integer. We prove that one may choose a subset S of primes with cardinality O(logX) such that a positive proportion of integers less than X can be represented by x2+py2 for at least one p∈S.}, author = {Diao, Yijie}, issn = {1730-6264}, journal = {Acta Arithmetica}, keywords = {Algebra, Number Theory}, pages = {1--17}, publisher = {Instytut Matematyczny}, title = {{Density of the union of positive diagonal binary quadratic forms}}, doi = {10.4064/aa210830-24-11}, volume = {207}, year = {2023}, } @article{13200, abstract = {Recent quantum technologies have established precise quantum control of various microscopic systems using electromagnetic waves. Interfaces based on cryogenic cavity electro-optic systems are particularly promising, due to the direct interaction between microwave and optical fields in the quantum regime. Quantum optical control of superconducting microwave circuits has been precluded so far due to the weak electro-optical coupling as well as quasi-particles induced by the pump laser. Here we report the coherent control of a superconducting microwave cavity using laser pulses in a multimode electro-optical device at millikelvin temperature with near-unity cooperativity. Both the stationary and instantaneous responses of the microwave and optical modes comply with the coherent electro-optical interaction, and reveal only minuscule amount of excess back-action with an unanticipated time delay. Our demonstration enables wide ranges of applications beyond quantum transductions, from squeezing and quantum non-demolition measurements of microwave fields, to entanglement generation and hybrid quantum networks.}, author = {Qiu, Liu and Sahu, Rishabh and Hease, William J and Arnold, Georg M and Fink, Johannes M}, issn = {2041-1723}, journal = {Nature Communications}, publisher = {Nature Research}, title = {{Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action}}, doi = {10.1038/s41467-023-39493-3}, volume = {14}, year = {2023}, } @article{13315, abstract = {How do statistical dependencies in measurement noise influence high-dimensional inference? To answer this, we study the paradigmatic spiked matrix model of principal components analysis (PCA), where a rank-one matrix is corrupted by additive noise. We go beyond the usual independence assumption on the noise entries, by drawing the noise from a low-order polynomial orthogonal matrix ensemble. The resulting noise correlations make the setting relevant for applications but analytically challenging. We provide characterization of the Bayes optimal limits of inference in this model. If the spike is rotation invariant, we show that standard spectral PCA is optimal. However, for more general priors, both PCA and the existing approximate message-passing algorithm (AMP) fall short of achieving the information-theoretic limits, which we compute using the replica method from statistical physics. We thus propose an AMP, inspired by the theory of adaptive Thouless–Anderson–Palmer equations, which is empirically observed to saturate the conjectured theoretical limit. This AMP comes with a rigorous state evolution analysis tracking its performance. Although we focus on specific noise distributions, our methodology can be generalized to a wide class of trace matrix ensembles at the cost of more involved expressions. Finally, despite the seemingly strong assumption of rotation-invariant noise, our theory empirically predicts algorithmic performance on real data, pointing at strong universality properties.}, author = {Barbier, Jean and Camilli, Francesco and Mondelli, Marco and Sáenz, Manuel}, issn = {1091-6490}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {30}, publisher = {National Academy of Sciences}, title = {{Fundamental limits in structured principal component analysis and how to reach them}}, doi = {10.1073/pnas.2302028120}, volume = {120}, year = {2023}, } @article{14037, abstract = {Traditionally, nuclear spin is not considered to affect biological processes. Recently, this has changed as isotopic fractionation that deviates from classical mass dependence was reported both in vitro and in vivo. In these cases, the isotopic effect correlates with the nuclear magnetic spin. Here, we show nuclear spin effects using stable oxygen isotopes (16O, 17O, and 18O) in two separate setups: an artificial dioxygen production system and biological aquaporin channels in cells. We observe that oxygen dynamics in chiral environments (in particular its transport) depend on nuclear spin, suggesting future applications for controlled isotope separation to be used, for instance, in NMR. To demonstrate the mechanism behind our findings, we formulate theoretical models based on a nuclear-spin-enhanced switch between electronic spin states. Accounting for the role of nuclear spin in biology can provide insights into the role of quantum effects in living systems and help inspire the development of future biotechnology solutions.}, author = {Vardi, Ofek and Maroudas-Sklare, Naama and Kolodny, Yuval and Volosniev, Artem and Saragovi, Amijai and Galili, Nir and Ferrera, Stav and Ghazaryan, Areg and Yuran, Nir and Affek, Hagit P. and Luz, Boaz and Goldsmith, Yonaton and Keren, Nir and Yochelis, Shira and Halevy, Itay and Lemeshko, Mikhail and Paltiel, Yossi}, issn = {1091-6490}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {32}, publisher = {National Academy of Sciences}, title = {{Nuclear spin effects in biological processes}}, doi = {10.1073/pnas.2300828120}, volume = {120}, year = {2023}, } @article{12683, abstract = {We study the eigenvalue trajectories of a time dependent matrix Gt=H+itvv∗ for t≥0, where H is an N×N Hermitian random matrix and v is a unit vector. In particular, we establish that with high probability, an outlier can be distinguished at all times t>1+N−1/3+ϵ, for any ϵ>0. The study of this natural process combines elements of Hermitian and non-Hermitian analysis, and illustrates some aspects of the intrinsic instability of (even weakly) non-Hermitian matrices.}, author = {Dubach, Guillaume and Erdös, László}, issn = {1083-589X}, journal = {Electronic Communications in Probability}, pages = {1--13}, publisher = {Institute of Mathematical Statistics}, title = {{Dynamics of a rank-one perturbation of a Hermitian matrix}}, doi = {10.1214/23-ECP516}, volume = {28}, year = {2023}, } @article{12761, abstract = {We consider the fluctuations of regular functions f of a Wigner matrix W viewed as an entire matrix f (W). Going beyond the well-studied tracial mode, Trf (W), which is equivalent to the customary linear statistics of eigenvalues, we show that Trf (W)A is asymptotically normal for any nontrivial bounded deterministic matrix A. We identify three different and asymptotically independent modes of this fluctuation, corresponding to the tracial part, the traceless diagonal part and the off-diagonal part of f (W) in the entire mesoscopic regime, where we find that the off-diagonal modes fluctuate on a much smaller scale than the tracial mode. As a main motivation to study CLT in such generality on small mesoscopic scales, we determine the fluctuations in the eigenstate thermalization hypothesis (Phys. Rev. A 43 (1991) 2046–2049), that is, prove that the eigenfunction overlaps with any deterministic matrix are asymptotically Gaussian after a small spectral averaging. Finally, in the macroscopic regime our result also generalizes (Zh. Mat. Fiz. Anal. Geom. 9 (2013) 536–581, 611, 615) to complex W and to all crossover ensembles in between. The main technical inputs are the recent multiresolvent local laws with traceless deterministic matrices from the companion paper (Comm. Math. Phys. 388 (2021) 1005–1048).}, author = {Cipolloni, Giorgio and Erdös, László and Schröder, Dominik J}, issn = {1050-5164}, journal = {Annals of Applied Probability}, number = {1}, pages = {447--489}, publisher = {Institute of Mathematical Statistics}, title = {{Functional central limit theorems for Wigner matrices}}, doi = {10.1214/22-AAP1820}, volume = {33}, year = {2023}, } @article{8682, abstract = {It is known that the Brauer--Manin obstruction to the Hasse principle is vacuous for smooth Fano hypersurfaces of dimension at least 3 over any number field. Moreover, for such varieties it follows from a general conjecture of Colliot-Thélène that the Brauer--Manin obstruction to the Hasse principle should be the only one, so that the Hasse principle is expected to hold. Working over the field of rational numbers and ordering Fano hypersurfaces of fixed degree and dimension by height, we prove that almost every such hypersurface satisfies the Hasse principle provided that the dimension is at least 3. This proves a conjecture of Poonen and Voloch in every case except for cubic surfaces.}, author = {Browning, Timothy D and Boudec, Pierre Le and Sawin, Will}, issn = {0003-486X}, journal = {Annals of Mathematics}, number = {3}, pages = {1115--1203}, publisher = {Princeton University}, title = {{The Hasse principle for random Fano hypersurfaces}}, doi = {10.4007/annals.2023.197.3.3}, volume = {197}, year = {2023}, } @article{12706, abstract = {Allometric settings of population dynamics models are appealing due to their parsimonious nature and broad utility when studying system level effects. Here, we parameterise the size-scaled Rosenzweig-MacArthur differential equations to eliminate prey-mass dependency, facilitating an in depth analytic study of the equations which incorporates scaling parameters’ contributions to coexistence. We define the functional response term to match empirical findings, and examine situations where metabolic theory derivations and observation diverge. The dynamical properties of the Rosenzweig-MacArthur system, encompassing the distribution of size-abundance equilibria, the scaling of period and amplitude of population cycling, and relationships between predator and prey abundances, are consistent with empirical observation. Our parameterisation is an accurate minimal model across 15+ orders of mass magnitude.}, author = {Mckerral, Jody C. and Kleshnina, Maria and Ejov, Vladimir and Bartle, Louise and Mitchell, James G. and Filar, Jerzy A.}, issn = {1932-6203}, journal = {PLoS One}, number = {2}, pages = {e0279838}, publisher = {Public Library of Science}, title = {{Empirical parameterisation and dynamical analysis of the allometric Rosenzweig-MacArthur equations}}, doi = {10.1371/journal.pone.0279838}, volume = {18}, year = {2023}, } @article{13202, abstract = {Phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) plays an essential role in neuronal activities through interaction with various proteins involved in signaling at membranes. However, the distribution pattern of PI(4,5)P2 and the association with these proteins on the neuronal cell membranes remain elusive. In this study, we established a method for visualizing PI(4,5)P2 by SDS-digested freeze-fracture replica labeling (SDS-FRL) to investigate the quantitative nanoscale distribution of PI(4,5)P2 in cryo-fixed brain. We demonstrate that PI(4,5)P2 forms tiny clusters with a mean size of ∼1000 nm2 rather than randomly distributed in cerebellar neuronal membranes in male C57BL/6J mice. These clusters show preferential accumulation in specific membrane compartments of different cell types, in particular, in Purkinje cell (PC) spines and granule cell (GC) presynaptic active zones. Furthermore, we revealed extensive association of PI(4,5)P2 with CaV2.1 and GIRK3 across different membrane compartments, whereas its association with mGluR1α was compartment specific. These results suggest that our SDS-FRL method provides valuable insights into the physiological functions of PI(4,5)P2 in neurons.}, author = {Eguchi, Kohgaku and Le Monnier, Elodie and Shigemoto, Ryuichi}, issn = {1529-2401}, journal = {The Journal of Neuroscience}, number = {23}, pages = {4197--4216}, publisher = {Society for Neuroscience}, title = {{Nanoscale phosphoinositide distribution on cell membranes of mouse cerebellar neurons}}, doi = {10.1523/JNEUROSCI.1514-22.2023}, volume = {43}, year = {2023}, } @article{12916, abstract = {We apply a variant of the square-sieve to produce an upper bound for the number of rational points of bounded height on a family of surfaces that admit a fibration over P1 whose general fibre is a hyperelliptic curve. The implied constant does not depend on the coefficients of the polynomial defining the surface. }, author = {Bonolis, Dante and Browning, Timothy D}, issn = {2036-2145}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, number = {1}, pages = {173--204}, publisher = {Scuola Normale Superiore - Edizioni della Normale}, title = {{Uniform bounds for rational points on hyperelliptic fibrations}}, doi = {10.2422/2036-2145.202010_018}, volume = {24}, year = {2023}, } @phdthesis{14422, abstract = {Animals exhibit a remarkable ability to learn and remember new behaviors, skills, and associations throughout their lifetime. These capabilities are made possible thanks to a variety of changes in the brain throughout adulthood, regrouped under the term "plasticity". Some cells in the brain —neurons— and specifically changes in the connections between neurons, the synapses, were shown to be crucial for the formation, selection, and consolidation of memories from past experiences. These ongoing changes of synapses across time are called synaptic plasticity. Understanding how a myriad of biochemical processes operating at individual synapses can somehow work in concert to give rise to meaningful changes in behavior is a fascinating problem and an active area of research. However, the experimental search for the precise plasticity mechanisms at play in the brain is daunting, as it is difficult to control and observe synapses during learning. Theoretical approaches have thus been the default method to probe the plasticity-behavior connection. Such studies attempt to extract unifying principles across synapses and model all observed synaptic changes using plasticity rules: equations that govern the evolution of synaptic strengths across time in neuronal network models. These rules can use many relevant quantities to determine the magnitude of synaptic changes, such as the precise timings of pre- and postsynaptic action potentials, the recent neuronal activity levels, the state of neighboring synapses, etc. However, analytical studies rely heavily on human intuition and are forced to make simplifying assumptions about plasticity rules. In this thesis, we aim to assist and augment human intuition in this search for plasticity rules. We explore whether a numerical approach could automatically discover the plasticity rules that elicit desired behaviors in large networks of interconnected neurons. This approach is dubbed meta-learning synaptic plasticity: learning plasticity rules which themselves will make neuronal networks learn how to solve a desired task. We first write all the potential plasticity mechanisms to consider using a single expression with adjustable parameters. We then optimize these plasticity parameters using evolutionary strategies or Bayesian inference on tasks known to involve synaptic plasticity, such as familiarity detection and network stabilization. We show that these automated approaches are powerful tools, able to complement established analytical methods. By comprehensively screening plasticity rules at all synapse types in realistic, spiking neuronal network models, we discover entire sets of degenerate plausible plasticity rules that reliably elicit memory-related behaviors. Our approaches allow for more robust experimental predictions, by abstracting out the idiosyncrasies of individual plasticity rules, and provide fresh insights on synaptic plasticity in spiking network models. }, author = {Confavreux, Basile J}, issn = {2663 - 337X}, pages = {148}, publisher = {Institute of Science and Technology Austria}, title = {{Synapseek: Meta-learning synaptic plasticity rules}}, doi = {10.15479/at:ista:14422}, year = {2023}, } @phdthesis{14374, abstract = {Superconductivity has many important applications ranging from levitating trains over qubits to MRI scanners. The phenomenon is successfully modeled by Bardeen-Cooper-Schrieffer (BCS) theory. From a mathematical perspective, BCS theory has been studied extensively for systems without boundary. However, little is known in the presence of boundaries. With the help of numerical methods physicists observed that the critical temperature may increase in the presence of a boundary. The goal of this thesis is to understand the influence of boundaries on the critical temperature in BCS theory and to give a first rigorous justification of these observations. On the way, we also study two-body Schrödinger operators on domains with boundaries and prove additional results for superconductors without boundary. BCS theory is based on a non-linear functional, where the minimizer indicates whether the system is superconducting or in the normal, non-superconducting state. By considering the Hessian of the BCS functional at the normal state, one can analyze whether the normal state is possibly a minimum of the BCS functional and estimate the critical temperature. The Hessian turns out to be a linear operator resembling a Schrödinger operator for two interacting particles, but with more complicated kinetic energy. As a first step, we study the two-body Schrödinger operator in the presence of boundaries. For Neumann boundary conditions, we prove that the addition of a boundary can create new eigenvalues, which correspond to the two particles forming a bound state close to the boundary. Second, we need to understand superconductivity in the translation invariant setting. While in three dimensions this has been extensively studied, there is no mathematical literature for the one and two dimensional cases. In dimensions one and two, we compute the weak coupling asymptotics of the critical temperature and the energy gap in the translation invariant setting. We also prove that their ratio is independent of the microscopic details of the model in the weak coupling limit; this property is referred to as universality. In the third part, we study the critical temperature of superconductors in the presence of boundaries. We start by considering the one-dimensional case of a half-line with contact interaction. Then, we generalize the results to generic interactions and half-spaces in one, two and three dimensions. Finally, we compare the critical temperature of a quarter space in two dimensions to the critical temperatures of a half-space and of the full space.}, author = {Roos, Barbara}, issn = {2663 - 337X}, pages = {206}, publisher = {Institute of Science and Technology Austria}, title = {{Boundary superconductivity in BCS theory}}, doi = {10.15479/at:ista:14374}, year = {2023}, } @article{13207, abstract = {We consider the linear BCS equation, determining the BCS critical temperature, in the presence of a boundary, where Dirichlet boundary conditions are imposed. In the one-dimensional case with point interactions, we prove that the critical temperature is strictly larger than the bulk value, at least at weak coupling. In particular, the Cooper-pair wave function localizes near the boundary, an effect that cannot be modeled by effective Neumann boundary conditions on the order parameter as often imposed in Ginzburg–Landau theory. We also show that the relative shift in critical temperature vanishes if the coupling constant either goes to zero or to infinity.}, author = {Hainzl, Christian and Roos, Barbara and Seiringer, Robert}, issn = {1664-0403}, journal = {Journal of Spectral Theory}, number = {4}, pages = {1507–1540}, publisher = {EMS Press}, title = {{Boundary superconductivity in the BCS model}}, doi = {10.4171/JST/439}, volume = {12}, year = {2023}, } @article{14452, abstract = {The classical infinitesimal model is a simple and robust model for the inheritance of quantitative traits. In this model, a quantitative trait is expressed as the sum of a genetic and an environmental component, and the genetic component of offspring traits within a family follows a normal distribution around the average of the parents’ trait values, and has a variance that is independent of the parental traits. In previous work, we showed that when trait values are determined by the sum of a large number of additive Mendelian factors, each of small effect, one can justify the infinitesimal model as a limit of Mendelian inheritance. In this paper, we show that this result extends to include dominance. We define the model in terms of classical quantities of quantitative genetics, before justifying it as a limit of Mendelian inheritance as the number, M, of underlying loci tends to infinity. As in the additive case, the multivariate normal distribution of trait values across the pedigree can be expressed in terms of variance components in an ancestral population and probabilities of identity by descent determined by the pedigree. Now, with just first-order dominance effects, we require two-, three-, and four-way identities. We also show that, even if we condition on parental trait values, the “shared” and “residual” components of trait values within each family will be asymptotically normally distributed as the number of loci tends to infinity, with an error of order 1/M−−√⁠. We illustrate our results with some numerical examples.}, author = {Barton, Nicholas H and Etheridge, Alison M. and Véber, Amandine}, issn = {1943-2631}, journal = {Genetics}, number = {2}, publisher = {Oxford Academic}, title = {{The infinitesimal model with dominance}}, doi = {10.1093/genetics/iyad133}, volume = {225}, year = {2023}, } @misc{12949, abstract = {The classical infinitesimal model is a simple and robust model for the inheritance of quantitative traits. In this model, a quantitative trait is expressed as the sum of a genetic and a non-genetic (environmental) component and the genetic component of offspring traits within a family follows a normal distribution around the average of the parents’ trait values, and has a variance that is independent of the trait values of the parents. Although the trait distribution across the whole population can be far from normal, the trait distributions within families are normally distributed with a variance-covariance matrix that is determined entirely by that in the ancestral population and the probabilities of identity determined by the pedigree. Moreover, conditioning on some of the trait values within the pedigree has predictable effects on the mean and variance within and between families. In previous work, Barton et al. (2017), we showed that when trait values are determined by the sum of a large number of Mendelian factors, each of small effect, one can justify the infinitesimal model as limit of Mendelian inheritance. It was also shown that under some forms of epistasis, trait values within a family are still normally distributed.}, author = {Barton, Nicholas H}, keywords = {Quantitative genetics, infinitesimal model}, publisher = {Institute of Science and Technology Austria}, title = {{The infinitesimal model with dominance}}, doi = {10.15479/AT:ISTA:12949}, year = {2023}, } @inproceedings{14461, abstract = {Communication-reduction techniques are a popular way to improve scalability in data-parallel training of deep neural networks (DNNs). The recent emergence of large language models such as GPT has created the need for new approaches to exploit data-parallelism. Among these, fully-sharded data parallel (FSDP) training is highly popular, yet it still encounters scalability bottlenecks. One reason is that applying compression techniques to FSDP is challenging: as the vast majority of the communication involves the model’s weights, direct compression alters convergence and leads to accuracy loss. We present QSDP, a variant of FSDP which supports both gradient and weight quantization with theoretical guarantees, is simple to implement and has essentially no overheads. To derive QSDP we prove that a natural modification of SGD achieves convergence even when we only maintain quantized weights, and thus the domain over which we train consists of quantized points and is, therefore, highly non-convex. We validate this approach by training GPT-family models with up to 1.3 billion parameters on a multi-node cluster. Experiments show that QSDP preserves model accuracy, while completely removing the communication bottlenecks of FSDP, providing end-to-end speedups of up to 2.2x.}, author = {Markov, Ilia and Vladu, Adrian and Guo, Qi and Alistarh, Dan-Adrian}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, issn = {2640-3498}, location = {Honolulu, Hawaii, HI, United States}, pages = {24020--24044}, publisher = {ML Research Press}, title = {{Quantized distributed training of large models with convergence guarantees}}, volume = {202}, year = {2023}, } @inproceedings{14462, abstract = {We study fine-grained error bounds for differentially private algorithms for counting under continual observation. Our main insight is that the matrix mechanism when using lower-triangular matrices can be used in the continual observation model. More specifically, we give an explicit factorization for the counting matrix Mcount and upper bound the error explicitly. We also give a fine-grained analysis, specifying the exact constant in the upper bound. Our analysis is based on upper and lower bounds of the completely bounded norm (cb-norm) of Mcount . Along the way, we improve the best-known bound of 28 years by Mathias (SIAM Journal on Matrix Analysis and Applications, 1993) on the cb-norm of Mcount for a large range of the dimension of Mcount. Furthermore, we are the first to give concrete error bounds for various problems under continual observation such as binary counting, maintaining a histogram, releasing an approximately cut-preserving synthetic graph, many graph-based statistics, and substring and episode counting. Finally, we note that our result can be used to get a fine-grained error bound for non-interactive local learning and the first lower bounds on the additive error for (ϵ,δ)-differentially-private counting under continual observation. Subsequent to this work, Henzinger et al. (SODA, 2023) showed that our factorization also achieves fine-grained mean-squared error.}, author = {Fichtenberger, Hendrik and Henzinger, Monika H and Upadhyay, Jalaj}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, issn = {2640-3498}, location = {Honolulu, Hawaii, HI, United States}, pages = {10072--10092}, publisher = {ML Research Press}, title = {{Constant matters: Fine-grained error bound on differentially private continual observation}}, volume = {202}, year = {2023}, } @inproceedings{14459, abstract = {Autoencoders are a popular model in many branches of machine learning and lossy data compression. However, their fundamental limits, the performance of gradient methods and the features learnt during optimization remain poorly understood, even in the two-layer setting. In fact, earlier work has considered either linear autoencoders or specific training regimes (leading to vanishing or diverging compression rates). Our paper addresses this gap by focusing on non-linear two-layer autoencoders trained in the challenging proportional regime in which the input dimension scales linearly with the size of the representation. Our results characterize the minimizers of the population risk, and show that such minimizers are achieved by gradient methods; their structure is also unveiled, thus leading to a concise description of the features obtained via training. For the special case of a sign activation function, our analysis establishes the fundamental limits for the lossy compression of Gaussian sources via (shallow) autoencoders. Finally, while the results are proved for Gaussian data, numerical simulations on standard datasets display the universality of the theoretical predictions.}, author = {Shevchenko, Aleksandr and Kögler, Kevin and Hassani, Hamed and Mondelli, Marco}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, issn = {2640-3498}, location = {Honolulu, Hawaii, HI, United States}, pages = {31151--31209}, publisher = {ML Research Press}, title = {{Fundamental limits of two-layer autoencoders, and achieving them with gradient methods}}, volume = {202}, year = {2023}, } @inproceedings{14460, abstract = {We provide an efficient implementation of the backpropagation algorithm, specialized to the case where the weights of the neural network being trained are sparse. Our algorithm is general, as it applies to arbitrary (unstructured) sparsity and common layer types (e.g., convolutional or linear). We provide a fast vectorized implementation on commodity CPUs, and show that it can yield speedups in end-to-end runtime experiments, both in transfer learning using already-sparsified networks, and in training sparse networks from scratch. Thus, our results provide the first support for sparse training on commodity hardware.}, author = {Nikdan, Mahdi and Pegolotti, Tommaso and Iofinova, Eugenia B and Kurtic, Eldar and Alistarh, Dan-Adrian}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, issn = {2640-3498}, location = {Honolulu, Hawaii, HI, United States}, pages = {26215--26227}, publisher = {ML Research Press}, title = {{SparseProp: Efficient sparse backpropagation for faster training of neural networks at the edge}}, volume = {202}, year = {2023}, } @inproceedings{14457, abstract = {Threshold secret sharing allows a dealer to split a secret s into n shares, such that any t shares allow for reconstructing s, but no t-1 shares reveal any information about s. Leakage-resilient secret sharing requires that the secret remains hidden, even when an adversary additionally obtains a limited amount of leakage from every share. Benhamouda et al. (CRYPTO’18) proved that Shamir’s secret sharing scheme is one bit leakage-resilient for reconstruction threshold t≥0.85n and conjectured that the same holds for t = c.n for any constant 0≤c≤1. Nielsen and Simkin (EUROCRYPT’20) showed that this is the best one can hope for by proving that Shamir’s scheme is not secure against one-bit leakage when t0c.n/log(n). In this work, we strengthen the lower bound of Nielsen and Simkin. We consider noisy leakage-resilience, where a random subset of leakages is replaced by uniformly random noise. We prove a lower bound for Shamir’s secret sharing, similar to that of Nielsen and Simkin, which holds even when a constant fraction of leakages is replaced by random noise. To this end, we first prove a lower bound on the share size of any noisy-leakage-resilient sharing scheme. We then use this lower bound to show that there exist universal constants c1, c2, such that for sufficiently large n it holds that Shamir’s secret sharing scheme is not noisy-leakage-resilient for t≤c1.n/log(n), even when a c2 fraction of leakages are replaced by random noise. }, author = {Hoffmann, Charlotte and Simkin, Mark}, booktitle = {8th International Conference on Cryptology and Information Security in Latin America}, isbn = {9783031444685}, issn = {1611-3349}, location = {Quito, Ecuador}, pages = {215--228}, publisher = {Springer Nature}, title = {{Stronger lower bounds for leakage-resilient secret sharing}}, doi = {10.1007/978-3-031-44469-2_11}, volume = {14168}, year = {2023}, } @inproceedings{14458, abstract = {We show for the first time that large-scale generative pretrained transformer (GPT) family models can be pruned to at least 50% sparsity in one-shot, without any retraining, at minimal loss of accuracy. This is achieved via a new pruning method called SparseGPT, specifically designed to work efficiently and accurately on massive GPT-family models. We can execute SparseGPT on the largest available open-source models, OPT-175B and BLOOM-176B, in under 4.5 hours, and can reach 60% unstructured sparsity with negligible increase in perplexity: remarkably, more than 100 billion weights from these models can be ignored at inference time. SparseGPT generalizes to semi-structured (2:4 and 4:8) patterns, and is compatible with weight quantization approaches. The code is available at: https://github.com/IST-DASLab/sparsegpt.}, author = {Frantar, Elias and Alistarh, Dan-Adrian}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, issn = {2640-3498}, location = {Honolulu, Hawaii, HI, United States}, pages = {10323--10337}, publisher = {ML Research Press}, title = {{SparseGPT: Massive language models can be accurately pruned in one-shot}}, volume = {202}, year = {2023}, } @article{14451, abstract = {We investigate the potential of Multi-Objective, Deep Reinforcement Learning for stock and cryptocurrency single-asset trading: in particular, we consider a Multi-Objective algorithm which generalizes the reward functions and discount factor (i.e., these components are not specified a priori, but incorporated in the learning process). Firstly, using several important assets (BTCUSD, ETHUSDT, XRPUSDT, AAPL, SPY, NIFTY50), we verify the reward generalization property of the proposed Multi-Objective algorithm, and provide preliminary statistical evidence showing increased predictive stability over the corresponding Single-Objective strategy. Secondly, we show that the Multi-Objective algorithm has a clear edge over the corresponding Single-Objective strategy when the reward mechanism is sparse (i.e., when non-null feedback is infrequent over time). Finally, we discuss the generalization properties with respect to the discount factor. The entirety of our code is provided in open-source format.}, author = {Cornalba, Federico and Disselkamp, Constantin and Scassola, Davide and Helf, Christopher}, issn = {1433-3058}, journal = {Neural Computing and Applications}, publisher = {Springer Nature}, title = {{Multi-objective reward generalization: improving performance of Deep Reinforcement Learning for applications in single-asset trading}}, doi = {10.1007/s00521-023-09033-7}, year = {2023}, } @article{14442, abstract = {In the presence of an obstacle, active particles condensate into a surface “wetting” layer due to persistent motion. If the obstacle is asymmetric, a rectification current arises in addition to wetting. Asymmetric geometries are therefore commonly used to concentrate microorganisms like bacteria and sperms. However, most studies neglect the fact that biological active matter is diverse, composed of individuals with distinct self-propulsions. Using simulations, we study a mixture of “fast” and “slow” active Brownian disks in two dimensions interacting with large half-disk obstacles. With this prototypical obstacle geometry, we analyze how the stationary collective behavior depends on the degree of self-propulsion “diversity,” defined as proportional to the difference between the self-propulsion speeds, while keeping the average self-propulsion speed fixed. A wetting layer rich in fast particles arises. The rectification current is amplified by speed diversity due to a superlinear dependence of rectification on self-propulsion speed, which arises from cooperative effects. Thus, the total rectification current cannot be obtained from an effective one-component active fluid with the same average self-propulsion speed, highlighting the importance of considering diversity in active matter.}, author = {Rojas Vega, Mauricio Nicolas and De Castro, Pablo and Soto, Rodrigo}, issn = {1292-895X}, journal = {The European Physical Journal E}, number = {10}, publisher = {Springer Nature}, title = {{Mixtures of self-propelled particles interacting with asymmetric obstacles}}, doi = {10.1140/epje/s10189-023-00354-y}, volume = {46}, year = {2023}, } @article{14444, abstract = {We prove several results about substructures in Latin squares. First, we explain how to adapt our recent work on high-girth Steiner triple systems to the setting of Latin squares, resolving a conjecture of Linial that there exist Latin squares with arbitrarily high girth. As a consequence, we see that the number of order- n Latin squares with no intercalate (i.e., no 2×2 Latin subsquare) is at least (e−9/4n−o(n))n2. Equivalently, P[N=0]≥e−n2/4−o(n2)=e−(1+o(1))EN , where N is the number of intercalates in a uniformly random order- n Latin square. In fact, extending recent work of Kwan, Sah, and Sawhney, we resolve the general large-deviation problem for intercalates in random Latin squares, up to constant factors in the exponent: for any constant 0<δ≤1 we have P[N≤(1−δ)EN]=exp(−Θ(n2)) and for any constant δ>0 we have P[N≥(1+δ)EN]=exp(−Θ(n4/3logn)). Finally, as an application of some new general tools for studying substructures in random Latin squares, we show that in almost all order- n Latin squares, the number of cuboctahedra (i.e., the number of pairs of possibly degenerate 2×2 submatrices with the same arrangement of symbols) is of order n4, which is the minimum possible. As observed by Gowers and Long, this number can be interpreted as measuring ``how associative'' the quasigroup associated with the Latin square is.}, author = {Kwan, Matthew Alan and Sah, Ashwin and Sawhney, Mehtaab and Simkin, Michael}, issn = {1565-8511}, journal = {Israel Journal of Mathematics}, number = {2}, pages = {363--416}, publisher = {Springer Nature}, title = {{Substructures in Latin squares}}, doi = {10.1007/s11856-023-2513-9}, volume = {256}, year = {2023}, } @inproceedings{14454, abstract = {As AI and machine-learned software are used increasingly for making decisions that affect humans, it is imperative that they remain fair and unbiased in their decisions. To complement design-time bias mitigation measures, runtime verification techniques have been introduced recently to monitor the algorithmic fairness of deployed systems. Previous monitoring techniques assume full observability of the states of the (unknown) monitored system. Moreover, they can monitor only fairness properties that are specified as arithmetic expressions over the probabilities of different events. In this work, we extend fairness monitoring to systems modeled as partially observed Markov chains (POMC), and to specifications containing arithmetic expressions over the expected values of numerical functions on event sequences. The only assumptions we make are that the underlying POMC is aperiodic and starts in the stationary distribution, with a bound on its mixing time being known. These assumptions enable us to estimate a given property for the entire distribution of possible executions of the monitored POMC, by observing only a single execution. Our monitors observe a long run of the system and, after each new observation, output updated PAC-estimates of how fair or biased the system is. The monitors are computationally lightweight and, using a prototype implementation, we demonstrate their effectiveness on several real-world examples.}, author = {Henzinger, Thomas A and Kueffner, Konstantin and Mallik, Kaushik}, booktitle = {23rd International Conference on Runtime Verification}, isbn = {9783031442667}, issn = {1611-3349}, location = {Thessaloniki, Greece}, pages = {291--311}, publisher = {Springer Nature}, title = {{Monitoring algorithmic fairness under partial observations}}, doi = {10.1007/978-3-031-44267-4_15}, volume = {14245}, year = {2023}, } @article{14446, abstract = {Recent work has paid close attention to the first principle of Granger causality, according to which cause precedes effect. In this context, the question may arise whether the detected direction of causality also reverses after the time reversal of unidirectionally coupled data. Recently, it has been shown that for unidirectionally causally connected autoregressive (AR) processes X → Y, after time reversal of data, the opposite causal direction Y → X is indeed detected, although typically as part of the bidirectional X↔ Y link. As we argue here, the answer is different when the measured data are not from AR processes but from linked deterministic systems. When the goal is the usual forward data analysis, cross-mapping-like approaches correctly detect X → Y, while Granger causality-like approaches, which should not be used for deterministic time series, detect causal independence X → Y. The results of backward causal analysis depend on the predictability of the reversed data. Unlike AR processes, observables from deterministic dynamical systems, even complex nonlinear ones, can be predicted well forward, while backward predictions can be difficult (notably when the time reversal of a function leads to one-to-many relations). To address this problem, we propose an approach based on models that provide multiple candidate predictions for the target, combined with a loss function that consideres only the best candidate. The resulting good forward and backward predictability supports the view that unidirectionally causally linked deterministic dynamical systems X → Y can be expected to detect the same link both before and after time reversal.}, author = {Jakubík, Jozef and Bui Thi Mai, Phuong and Chvosteková, Martina and Krakovská, Anna}, issn = {1335-8871}, journal = {Measurement Science Review}, number = {4}, pages = {175--183}, publisher = {Sciendo}, title = {{Against the flow of time with multi-output models}}, doi = {10.2478/msr-2023-0023}, volume = {23}, year = {2023}, } @article{14443, abstract = {Importance Climate change, pollution, urbanization, socioeconomic inequality, and psychosocial effects of the COVID-19 pandemic have caused massive changes in environmental conditions that affect brain health during the life span, both on a population level as well as on the level of the individual. How these environmental factors influence the brain, behavior, and mental illness is not well known. Observations A research strategy enabling population neuroscience to contribute to identify brain mechanisms underlying environment-related mental illness by leveraging innovative enrichment tools for data federation, geospatial observation, climate and pollution measures, digital health, and novel data integration techniques is described. This strategy can inform innovative treatments that target causal cognitive and molecular mechanisms of mental illness related to the environment. An example is presented of the environMENTAL Project that is leveraging federated cohort data of over 1.5 million European citizens and patients enriched with deep phenotyping data from large-scale behavioral neuroimaging cohorts to identify brain mechanisms related to environmental adversity underlying symptoms of depression, anxiety, stress, and substance misuse. Conclusions and Relevance This research will lead to the development of objective biomarkers and evidence-based interventions that will significantly improve outcomes of environment-related mental illness.}, author = {Schumann, Gunter and Andreassen, Ole A. and Banaschewski, Tobias and Calhoun, Vince D. and Clinton, Nicholas and Desrivieres, Sylvane and Brandlistuen, Ragnhild Eek and Feng, Jianfeng and Hese, Soeren and Hitchen, Esther and Hoffmann, Per and Jia, Tianye and Jirsa, Viktor and Marquand, Andre F. and Nees, Frauke and Nöthen, Markus M. and Novarino, Gaia and Polemiti, Elli and Ralser, Markus and Rapp, Michael and Schepanski, Kerstin and Schikowski, Tamara and Slater, Mel and Sommer, Peter and Stahl, Bernd Carsten and Thompson, Paul M. and Twardziok, Sven and Van Der Meer, Dennis and Walter, Henrik and Westlye, Lars}, issn = {2168-6238}, journal = {JAMA Psychiatry}, number = {10}, pages = {1066--1074}, publisher = {American Medical Association}, title = {{Addressing global environmental challenges to mental health using population neuroscience: A review}}, doi = {10.1001/jamapsychiatry.2023.2996}, volume = {80}, year = {2023}, } @article{14441, abstract = {We study the Fröhlich polaron model in R3, and establish the subleading term in the strong coupling asymptotics of its ground state energy, corresponding to the quantum corrections to the classical energy determined by the Pekar approximation.}, author = {Brooks, Morris and Seiringer, Robert}, issn = {1432-0916}, journal = {Communications in Mathematical Physics}, pages = {287--337}, publisher = {Springer Nature}, title = {{The Fröhlich Polaron at strong coupling: Part I - The quantum correction to the classical energy}}, doi = {10.1007/s00220-023-04841-3}, volume = {404}, year = {2023}, } @inproceedings{14448, abstract = {We consider the problem of solving LP relaxations of MAP-MRF inference problems, and in particular the method proposed recently in [16], [35]. As a key computational subroutine, it uses a variant of the Frank-Wolfe (FW) method to minimize a smooth convex function over a combinatorial polytope. We propose an efficient implementation of this subroutine based on in-face Frank-Wolfe directions, introduced in [4] in a different context. More generally, we define an abstract data structure for a combinatorial subproblem that enables in-face FW directions, and describe its specialization for tree-structured MAP-MRF inference subproblems. Experimental results indicate that the resulting method is the current state-of-art LP solver for some classes of problems. Our code is available at pub.ist.ac.at/~vnk/papers/IN-FACE-FW.html.}, author = {Kolmogorov, Vladimir}, booktitle = {Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition}, isbn = {9798350301298}, issn = {1063-6919}, location = {Vancouver, Canada}, pages = {11980--11989}, publisher = {IEEE}, title = {{Solving relaxations of MAP-MRF problems: Combinatorial in-face Frank-Wolfe directions}}, doi = {10.1109/CVPR52729.2023.01153}, volume = {2023}, year = {2023}, } @article{12672, abstract = {Cytosine methylation within CG dinucleotides (mCG) can be epigenetically inherited over many generations. Such inheritance is thought to be mediated by a semiconservative mechanism that produces binary present/absent methylation patterns. However, we show here that in Arabidopsis thaliana h1ddm1 mutants, intermediate heterochromatic mCG is stably inherited across many generations and is quantitatively associated with transposon expression. We develop a mathematical model that estimates the rates of semiconservative maintenance failure and de novo methylation at each transposon, demonstrating that mCG can be stably inherited at any level via a dynamic balance of these activities. We find that DRM2 – the core methyltransferase of the RNA-directed DNA methylation pathway – catalyzes most of the heterochromatic de novo mCG, with de novo rates orders of magnitude higher than previously thought, whereas chromomethylases make smaller contributions. Our results demonstrate that stable epigenetic inheritance of mCG in plant heterochromatin is enabled by extensive de novo methylation.}, author = {Lyons, David B. and Briffa, Amy and He, Shengbo and Choi, Jaemyung and Hollwey, Elizabeth and Colicchio, Jack and Anderson, Ian and Feng, Xiaoqi and Howard, Martin and Zilberman, Daniel}, issn = {2211-1247}, journal = {Cell Reports}, number = {3}, publisher = {Elsevier}, title = {{Extensive de novo activity stabilizes epigenetic inheritance of CG methylation in Arabidopsis transposons}}, doi = {10.1016/j.celrep.2023.112132}, volume = {42}, year = {2023}, } @article{13178, abstract = {We consider the large polaron described by the Fröhlich Hamiltonian and study its energy-momentum relation defined as the lowest possible energy as a function of the total momentum. Using a suitable family of trial states, we derive an optimal parabolic upper bound for the energy-momentum relation in the limit of strong coupling. The upper bound consists of a momentum independent term that agrees with the predicted two-term expansion for the ground state energy of the strongly coupled polaron at rest and a term that is quadratic in the momentum with coefficient given by the inverse of twice the classical effective mass introduced by Landau and Pekar.}, author = {Mitrouskas, David Johannes and Mysliwy, Krzysztof and Seiringer, Robert}, issn = {2050-5094}, journal = {Forum of Mathematics}, pages = {1--52}, publisher = {Cambridge University Press}, title = {{Optimal parabolic upper bound for the energy-momentum relation of a strongly coupled polaron}}, doi = {10.1017/fms.2023.45}, volume = {11}, year = {2023}, } @article{14484, abstract = {Intercellular signaling molecules, known as morphogens, act at a long range in developing tissues to provide spatial information and control properties such as cell fate and tissue growth. The production, transport, and removal of morphogens shape their concentration profiles in time and space. Downstream signaling cascades and gene regulatory networks within cells then convert the spatiotemporal morphogen profiles into distinct cellular responses. Current challenges are to understand the diverse molecular and cellular mechanisms underlying morphogen gradient formation, as well as the logic of downstream regulatory circuits involved in morphogen interpretation. This knowledge, combining experimental and theoretical results, is essential to understand emerging properties of morphogen-controlled systems, such as robustness and scaling.}, author = {Kicheva, Anna and Briscoe, James}, issn = {1530-8995}, journal = {Annual Review of Cell and Developmental Biology}, pages = {91--121}, publisher = {Annual Reviews}, title = {{Control of tissue development by morphogens}}, doi = {10.1146/annurev-cellbio-020823-011522}, volume = {39}, year = {2023}, } @article{14488, abstract = {Portrait viewpoint and illumination editing is an important problem with several applications in VR/AR, movies, and photography. Comprehensive knowledge of geometry and illumination is critical for obtaining photorealistic results. Current methods are unable to explicitly model in 3D while handling both viewpoint and illumination editing from a single image. In this paper, we propose VoRF, a novel approach that can take even a single portrait image as input and relight human heads under novel illuminations that can be viewed from arbitrary viewpoints. VoRF represents a human head as a continuous volumetric field and learns a prior model of human heads using a coordinate-based MLP with individual latent spaces for identity and illumination. The prior model is learned in an auto-decoder manner over a diverse class of head shapes and appearances, allowing VoRF to generalize to novel test identities from a single input image. Additionally, VoRF has a reflectance MLP that uses the intermediate features of the prior model for rendering One-Light-at-A-Time (OLAT) images under novel views. We synthesize novel illuminations by combining these OLAT images with target environment maps. Qualitative and quantitative evaluations demonstrate the effectiveness of VoRF for relighting and novel view synthesis, even when applied to unseen subjects under uncontrolled illumination. This work is an extension of Rao et al. (VoRF: Volumetric Relightable Faces 2022). We provide extensive evaluation and ablative studies of our model and also provide an application, where any face can be relighted using textual input.}, author = {Rao, Pramod and Mallikarjun, B. R. and Fox, Gereon and Weyrich, Tim and Bickel, Bernd and Pfister, Hanspeter and Matusik, Wojciech and Zhan, Fangneng and Tewari, Ayush and Theobalt, Christian and Elgharib, Mohamed}, issn = {1573-1405}, journal = {International Journal of Computer Vision}, publisher = {Springer Nature}, title = {{A deeper analysis of volumetric relightiable faces}}, doi = {10.1007/s11263-023-01899-3}, year = {2023}, } @article{14487, abstract = {High Mountain Asia (HMA) is among the most vulnerable water towers globally and yet future projections of water availability in and from its high-mountain catchments remain uncertain, as their hydrologic response to ongoing environmental changes is complex. Mechanistic modeling approaches incorporating cryospheric, hydrological, and vegetation processes in high spatial, temporal, and physical detail have never been applied for high-elevation catchments of HMA. We use a land surface model at high spatial and temporal resolution (100 m and hourly) to simulate the coupled dynamics of energy, water, and vegetation for the 350 km2 Langtang catchment (Nepal). We compare our model outputs for one hydrological year against a large set of observations to gain insight into the partitioning of the water balance at the subseasonal scale and across elevation bands. During the simulated hydrological year, we find that evapotranspiration is a key component of the total water balance, as it causes about the equivalent of 20% of all the available precipitation or 154% of the water production from glacier melt in the basin to return directly to the atmosphere. The depletion of the cryospheric water budget is dominated by snow melt, but at high elevations is primarily dictated by snow and ice sublimation. Snow sublimation is the dominant vapor flux (49%) at the catchment scale, accounting for the equivalent of 11% of snowfall, 17% of snowmelt, and 75% of ice melt, respectively. We conclude that simulations should consider sublimation and other evaporative fluxes explicitly, as otherwise water balance estimates can be ill-quantified.}, author = {Buri, Pascal and Fatichi, Simone and Shaw, Thomas and Miles, Evan S. and Mccarthy, Michael and Fyffe, Catriona Louise and Fugger, Stefan and Ren, Shaoting and Kneib, Marin and Jouberton, Achille and Steiner, Jakob and Fujita, Koji and Pellicciotti, Francesca}, issn = {1944-7973}, journal = {Water Resources Research}, number = {10}, publisher = {Wiley}, title = {{Land surface modeling in the Himalayas: On the importance of evaporative fluxes for the water balance of a high-elevation catchment}}, doi = {10.1029/2022WR033841}, volume = {59}, year = {2023}, } @inproceedings{14485, abstract = {Batching is a technique that stores multiple keys/values in each node of a data structure. In sequential search data structures, batching reduces latency by reducing the number of cache misses and shortening the chain of pointers to dereference. Applying batching to concurrent data structures is challenging, because it is difficult to maintain the search property and keep contention low in the presence of batching. In this paper, we present a general methodology for leveraging batching in concurrent search data structures, called BatchBoost. BatchBoost builds a search data structure from distinct "data" and "index" layers. The data layer’s purpose is to store a batch of key/value pairs in each of its nodes. The index layer uses an unmodified concurrent search data structure to route operations to a position in the data layer that is "close" to where the corresponding key should exist. The requirements on the index and data layers are low: with minimal effort, we were able to compose three highly scalable concurrent search data structures based on three original data structures as the index layers with a batched version of the Lazy List as the data layer. The resulting BatchBoost data structures provide significant performance improvements over their original counterparts.}, author = {Aksenov, Vitaly and Anoprenko, Michael and Fedorov, Alexander and Spear, Michael}, booktitle = {37th International Symposium on Distributed Computing}, isbn = {9783959773010}, issn = {1868-8969}, location = {L'Aquila, Italy}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Brief announcement: BatchBoost: Universal batching for concurrent data structures}}, doi = {10.4230/LIPIcs.DISC.2023.35}, volume = {281}, year = {2023}, } @article{14486, abstract = {We present a minimal model of ferroelectric large polarons, which are suggested as one of the mechanisms responsible for the unique charge transport properties of hybrid perovskites. We demonstrate that short-ranged charge–rotor interactions lead to long-range ferroelectric ordering of rotors, which strongly affects the carrier mobility. In the nonperturbative regime, where our theory cannot be reduced to any of the earlier models, we reveal that the polaron is characterized by large coherence length and a roughly tenfold increase of the effective mass as compared to the bare mass. These results are in good agreement with other theoretical predictions for ferroelectric polarons. Our model establishes a general phenomenological framework for ferroelectric polarons providing the starting point for future studies of their role in the transport properties of hybrid organic-inorganic perovskites.}, author = {Koutentakis, Georgios and Ghazaryan, Areg and Lemeshko, Mikhail}, issn = {2643-1564}, journal = {Physical Review Research}, number = {4}, publisher = {American Physical Society}, title = {{Rotor lattice model of ferroelectric large polarons}}, doi = {10.1103/PhysRevResearch.5.043016}, volume = {5}, year = {2023}, } @article{14313, abstract = {To respond to auxin, the chief orchestrator of their multicellularity, plants evolved multiple receptor systems and signal transduction cascades. Despite decades of research, however, we are still lacking a satisfactory synthesis of various auxin signaling mechanisms. The chief discrepancy and historical controversy of the field is that of rapid and slow auxin effects on plant physiology and development. How is it possible that ions begin to trickle across the plasma membrane as soon as auxin enters the cell, even though the best-characterized transcriptional auxin pathway can take effect only after tens of minutes? Recently, unexpected progress has been made in understanding this and other unknowns of auxin signaling. We provide a perspective on these exciting developments and concepts whose general applicability might have ramifications beyond auxin signaling.}, author = {Fiedler, Lukas and Friml, Jiří}, issn = {1369-5266}, journal = {Current Opinion in Plant Biology}, number = {10}, publisher = {Elsevier}, title = {{Rapid auxin signaling: Unknowns old and new}}, doi = {10.1016/j.pbi.2023.102443}, volume = {75}, year = {2023}, } @misc{14494, abstract = {We provide i) gridded initial conditions (.tif), ii) modeled gridded monthly outputs (.tif), and iii) modeled hourly outputs at the station locations (.txt) for the hydrological year 2019. Information about the variables and units can be found in the figures (.png) associated to each dataset. Details about the datasets can be found in the original publication by Buri and others (2023). Buri, P., Fatichi, S., Shaw, T. E., Miles, E. S., McCarthy, M. J., Fyffe, C. L., ... & Pellicciotti, F. (2023). Land Surface Modeling in the Himalayas: On the Importance of Evaporative Fluxes for the Water Balance of a High‐Elevation Catchment. Water Resources Research, 59(10), e2022WR033841. DOI: 10.1029/2022WR033841}, author = {Buri, Pascal and Fatichi, Simone and Shaw, Thomas and Miles, Evan and McCarthy, Michael and Fyffe, Catriona Louise and Fugger, Stefan and Ren, Shaoting and Kneib, Marin and Jouberton, Achille and Steiner, Jakob and Fujita, Koji and Pellicciotti, Francesca}, publisher = {Zenodo}, title = {{Model output data to "Land surface modeling in the Himalayas: on the importance of evaporative fluxes for the water balance of a high elevation catchment"}}, doi = {10.5281/ZENODO.8402426}, year = {2023}, } @article{14499, abstract = {An n-vertex graph is called C-Ramsey if it has no clique or independent set of size Clog2n (i.e., if it has near-optimal Ramsey behavior). In this paper, we study edge statistics in Ramsey graphs, in particular obtaining very precise control of the distribution of the number of edges in a random vertex subset of a C-Ramsey graph. This brings together two ongoing lines of research: the study of ‘random-like’ properties of Ramsey graphs and the study of small-ball probability for low-degree polynomials of independent random variables. The proof proceeds via an ‘additive structure’ dichotomy on the degree sequence and involves a wide range of different tools from Fourier analysis, random matrix theory, the theory of Boolean functions, probabilistic combinatorics and low-rank approximation. In particular, a key ingredient is a new sharpened version of the quadratic Carbery–Wright theorem on small-ball probability for polynomials of Gaussians, which we believe is of independent interest. One of the consequences of our result is the resolution of an old conjecture of Erdős and McKay, for which Erdős reiterated in several of his open problem collections and for which he offered one of his notorious monetary prizes.}, author = {Kwan, Matthew Alan and Sah, Ashwin and Sauermann, Lisa and Sawhney, Mehtaab}, issn = {2050-5086}, journal = {Forum of Mathematics, Pi}, keywords = {Discrete Mathematics and Combinatorics, Geometry and Topology, Mathematical Physics, Statistics and Probability, Algebra and Number Theory, Analysis}, publisher = {Cambridge University Press}, title = {{Anticoncentration in Ramsey graphs and a proof of the Erdős–McKay conjecture}}, doi = {10.1017/fmp.2023.17}, volume = {11}, year = {2023}, } @article{14281, abstract = {In nature, proteins that switch between two conformations in response to environmental stimuli structurally transduce biochemical information in a manner analogous to how transistors control information flow in computing devices. Designing proteins with two distinct but fully structured conformations is a challenge for protein design as it requires sculpting an energy landscape with two distinct minima. Here we describe the design of “hinge” proteins that populate one designed state in the absence of ligand and a second designed state in the presence of ligand. X-ray crystallography, electron microscopy, double electron-electron resonance spectroscopy, and binding measurements demonstrate that despite the significant structural differences the two states are designed with atomic level accuracy and that the conformational and binding equilibria are closely coupled.}, author = {Praetorius, Florian M and Leung, Philip J. Y. and Tessmer, Maxx H. and Broerman, Adam and Demakis, Cullen and Dishman, Acacia F. and Pillai, Arvind and Idris, Abbas and Juergens, David and Dauparas, Justas and Li, Xinting and Levine, Paul M. and Lamb, Mila and Ballard, Ryanne K. and Gerben, Stacey R. and Nguyen, Hannah and Kang, Alex and Sankaran, Banumathi and Bera, Asim K. and Volkman, Brian F. and Nivala, Jeff and Stoll, Stefan and Baker, David}, issn = {1095-9203}, journal = {Science}, number = {6659}, pages = {754--760}, publisher = {American Association for the Advancement of Science}, title = {{Design of stimulus-responsive two-state hinge proteins}}, doi = {10.1126/science.adg7731}, volume = {381}, year = {2023}, } @unpublished{14294, abstract = {Growth factors and cytokines signal by binding to the extracellular domains of their receptors and drive association and transphosphorylation of the receptor intracellular tyrosine kinase domains, initiating downstream signaling cascades. To enable systematic exploration of how receptor valency and geometry affects signaling outcomes, we designed cyclic homo-oligomers with up to 8 subunits using repeat protein building blocks that can be modularly extended. By incorporating a de novo designed fibroblast growth-factor receptor (FGFR) binding module into these scaffolds, we generated a series of synthetic signaling ligands that exhibit potent valency- and geometry-dependent Ca2+ release and MAPK pathway activation. The high specificity of the designed agonists reveal distinct roles for two FGFR splice variants in driving endothelial and mesenchymal cell fates during early vascular development. The ability to incorporate receptor binding domains and repeat extensions in a modular fashion makes our designed scaffolds broadly useful for probing and manipulating cellular signaling pathways.}, author = {Edman, Natasha I and Redler, Rachel L and Phal, Ashish and Schlichthaerle, Thomas and Srivatsan, Sanjay R and Etemadi, Ali and An, Seong and Favor, Andrew and Ehnes, Devon and Li, Zhe and Praetorius, Florian M and Gordon, Max and Yang, Wei and Coventry, Brian and Hicks, Derrick R and Cao, Longxing and Bethel, Neville and Heine, Piper and Murray, Analisa N and Gerben, Stacey and Carter, Lauren and Miranda, Marcos and Negahdari, Babak and Lee, Sangwon and Trapnell, Cole and Stewart, Lance and Ekiert, Damian C and Schlessinger, Joseph and Shendure, Jay and Bhabha, Gira and Ruohola-Baker, Hannele and Baker, David}, booktitle = {bioRxiv}, title = {{Modulation of FGF pathway signaling and vascular differentiation using designed oligomeric assemblies}}, doi = {10.1101/2023.03.14.532666}, year = {2023}, } @article{14513, abstract = {Cold atomic gases have become a paradigmatic system for exploring fundamental physics, which at the same time allows for applications in quantum technologies. The accelerating developments in the field have led to a highly advanced set of engineering techniques that, for example, can tune interactions, shape the external geometry, select among a large set of atomic species with different properties, or control the number of atoms. In particular, it is possible to operate in lower dimensions and drive atomic systems into the strongly correlated regime. In this review, we discuss recent advances in few-body cold atom systems confined in low dimensions from a theoretical viewpoint. We mainly focus on bosonic systems in one dimension and provide an introduction to the static properties before we review the state-of-the-art research into quantum dynamical processes stimulated by the presence of correlations. Besides discussing the fundamental physical phenomena arising in these systems, we also provide an overview of the calculational and numerical tools and methods that are commonly used, thus delivering a balanced and comprehensive overview of the field. We conclude by giving an outlook on possible future directions that are interesting to explore in these correlated systems.}, author = {Mistakidis, S. I. and Volosniev, Artem and Barfknecht, R. E. and Fogarty, T. and Busch, Th and Foerster, A. and Schmelcher, P. and Zinner, N. T.}, issn = {0370-1573}, journal = {Physics Reports}, pages = {1--108}, publisher = {Elsevier}, title = {{Few-body Bose gases in low dimensions - A laboratory for quantum dynamics}}, doi = {10.1016/j.physrep.2023.10.004}, volume = {1042}, year = {2023}, } @misc{12869, abstract = {We introduce a stochastic cellular automaton as a model for culture and border formation. The model can be conceptualized as a game where the expansion rate of cultures is quantified in terms of their area and perimeter in such a way that approximately round cultures get a competitive advantage. We first analyse the model with periodic boundary conditions, where we study how the model can end up in a fixed state, i.e. freezes. Then we implement the model on the European geography with mountains and rivers. We see how the model reproduces some qualitative features of European culture formation, namely that rivers and mountains are more frequently borders between cultures, mountainous regions tend to have higher cultural diversity and the central European plain has less clear cultural borders. }, author = {Klausen, Frederik Ravn and Lauritsen, Asbjørn Bækgaard}, publisher = {Institute of Science and Technology Austria}, title = {{Research data for: A stochastic cellular automaton model of culture formation}}, doi = {10.15479/AT:ISTA:12869}, year = {2023}, } @article{12890, abstract = {We introduce a stochastic cellular automaton as a model for culture and border formation. The model can be conceptualized as a game where the expansion rate of cultures is quantified in terms of their area and perimeter in such a way that approximately geometrically round cultures get a competitive advantage. We first analyze the model with periodic boundary conditions, where we study how the model can end up in a fixed state, i.e., freezes. Then we implement the model on the European geography with mountains and rivers. We see how the model reproduces some qualitative features of European culture formation, namely, that rivers and mountains are more frequently borders between cultures, mountainous regions tend to have higher cultural diversity, and the central European plain has less clear cultural borders.}, author = {Klausen, Frederik Ravn and Lauritsen, Asbjørn Bækgaard}, issn = {2470-0053}, journal = {Physical Review E}, number = {5}, publisher = {American Physical Society}, title = {{Stochastic cellular automaton model of culture formation}}, doi = {10.1103/PhysRevE.108.054307}, volume = {108}, year = {2023}, } @inproceedings{14516, abstract = {We revisit decentralized random beacons with a focus on practical distributed applications. Decentralized random beacons (Beaver and So, Eurocrypt'93) provide the functionality for n parties to generate an unpredictable sequence of bits in a way that cannot be biased, which is useful for any decentralized protocol requiring trusted randomness. Existing beacon constructions are highly inefficient in practical settings where protocol parties need to rejoin after crashes or disconnections, and more significantly where smart contracts may rely on arbitrary index points in high-volume streams. For this, we introduce a new notion of history-generating decentralized random beacons (HGDRBs). Roughly, the history-generation property of HGDRBs allows for previous beacon outputs to be efficiently generated knowing only the current value and the public key. At application layers, history-generation supports registering a sparser set of on-chain values if desired, so that apps like lotteries can utilize on-chain values without incurring high-frequency costs, enjoying all the benefits of DRBs implemented off-chain or with decoupled, special-purpose chains. Unlike rollups, HG is tailored specifically to recovering and verifying pseudorandom bit sequences and thus enjoys unique optimizations investigated in this work. We introduce STROBE: an efficient HGDRB construction which generalizes the original squaring-based RSA approach of Beaver and So. STROBE enjoys several useful properties that make it suited for practical applications that use beacons: 1) history-generating: it can regenerate and verify high-throughput beacon streams, supporting sparse (thus cost-effective) ledger entries; 2) concisely self-verifying: NIZK-free, with state and validation employing a single ring element; 3) eco-friendly: stake-based rather than work based; 4) unbounded: refresh-free, addressing limitations of Beaver and So; 5) delay-free: results are immediately available. 6) storage-efficient: the last beacon suffices to derive all past outputs, thus O(1) storage requirements for nodes serving the whole history.}, author = {Beaver, Donald and Kelkar, Mahimna and Lewi, Kevin and Nikolaenko, Valeria and Sonnino, Alberto and Chalkias, Konstantinos and Kokoris Kogias, Eleftherios and Naurois, Ladi De and Roy, Arnab}, booktitle = {5th Conference on Advances in Financial Technologies}, isbn = {9783959773034}, issn = {1868-8969}, location = {Princeton, NJ, United States}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{STROBE: Streaming Threshold Random Beacons}}, doi = {10.4230/LIPIcs.AFT.2023.7}, volume = {282}, year = {2023}, } @article{14517, abstract = {State-of-the-art transmon qubits rely on large capacitors, which systematically improve their coherence due to reduced surface-loss participation. However, this approach increases both the footprint and the parasitic cross-coupling and is ultimately limited by radiation losses—a potential roadblock for scaling up quantum processors to millions of qubits. In this work we present transmon qubits with sizes as low as 36 × 39 µm2 with 100-nm-wide vacuum-gap capacitors that are micromachined from commercial silicon-on-insulator wafers and shadow evaporated with aluminum. We achieve a vacuum participation ratio up to 99.6% in an in-plane design that is compatible with standard coplanar circuits. Qubit relaxationtime measurements for small gaps with high zero-point electric field variance of up to 22 V/m reveal a double exponential decay indicating comparably strong qubit interaction with long-lived two-level systems. The exceptionally high selectivity of up to 20 dB to the superconductor-vacuum interface allows us to precisely back out the sub-single-photon dielectric loss tangent of aluminum oxide previously exposed to ambient conditions. In terms of future scaling potential, we achieve a ratio of qubit quality factor to a footprint area equal to 20 µm−2, which is comparable with the highest T1 devices relying on larger geometries, a value that could improve substantially for lower surface-loss superconductors. }, author = {Zemlicka, Martin and Redchenko, Elena and Peruzzo, Matilda and Hassani, Farid and Trioni, Andrea and Barzanjeh, Shabir and Fink, Johannes M}, issn = {2331-7019}, journal = {Physical Review Applied}, number = {4}, publisher = {American Physical Society}, title = {{Compact vacuum-gap transmon qubits: Selective and sensitive probes for superconductor surface losses}}, doi = {10.1103/PhysRevApplied.20.044054}, volume = {20}, year = {2023}, } @article{14515, abstract = {Most natural and engineered information-processing systems transmit information via signals that vary in time. Computing the information transmission rate or the information encoded in the temporal characteristics of these signals requires the mutual information between the input and output signals as a function of time, i.e., between the input and output trajectories. Yet, this is notoriously difficult because of the high-dimensional nature of the trajectory space, and all existing techniques require approximations. We present an exact Monte Carlo technique called path weight sampling (PWS) that, for the first time, makes it possible to compute the mutual information between input and output trajectories for any stochastic system that is described by a master equation. The principal idea is to use the master equation to evaluate the exact conditional probability of an individual output trajectory for a given input trajectory and average this via Monte Carlo sampling in trajectory space to obtain the mutual information. We present three variants of PWS, which all generate the trajectories using the standard stochastic simulation algorithm. While direct PWS is a brute-force method, Rosenbluth-Rosenbluth PWS exploits the analogy between signal trajectory sampling and polymer sampling, and thermodynamic integration PWS is based on a reversible work calculation in trajectory space. PWS also makes it possible to compute the mutual information between input and output trajectories for systems with hidden internal states as well as systems with feedback from output to input. Applying PWS to the bacterial chemotaxis system, consisting of 182 coupled chemical reactions, demonstrates not only that the scheme is highly efficient but also that the number of receptor clusters is much smaller than hitherto believed, while their size is much larger.}, author = {Reinhardt, Manuel and Tkačik, Gašper and Ten Wolde, Pieter Rein}, issn = {2160-3308}, journal = {Physical Review X}, number = {4}, publisher = {American Physical Society}, title = {{Path weight sampling: Exact Monte Carlo computation of the mutual information between stochastic trajectories}}, doi = {10.1103/PhysRevX.13.041017}, volume = {13}, year = {2023}, } @article{14514, abstract = {The elastic Leidenfrost effect occurs when a vaporizable soft solid is lowered onto a hot surface. Evaporative flow couples to elastic deformation, giving spontaneous bouncing or steady-state floating. The effect embodies an unexplored interplay between thermodynamics, elasticity, and lubrication: despite being observed, its basic theoretical description remains a challenge. Here, we provide a theory of elastic Leidenfrost floating. As weight increases, a rigid solid sits closer to the hot surface. By contrast, we discover an elasticity-dominated regime where the heavier the solid, the higher it floats. This geometry-governed behavior is reminiscent of the dynamics of large liquid Leidenfrost drops. We show that this elastic regime is characterized by Hertzian behavior of the solid’s underbelly and derive how the float height scales with materials parameters. Introducing a dimensionless elastic Leidenfrost number, we capture the crossover between rigid and Hertzian behavior. Our results provide theoretical underpinning for recent experiments, and point to the design of novel soft machines.}, author = {Binysh, Jack and Chakraborty, Indrajit and Chubynsky, Mykyta V. and Diaz Melian, Vicente L and Waitukaitis, Scott R and Sprittles, James E. and Souslov, Anton}, issn = {1079-7114}, journal = {Physical Review Letters}, number = {16}, publisher = {American Physical Society}, title = {{Modeling Leidenfrost levitation of soft elastic solids}}, doi = {10.1103/PhysRevLett.131.168201}, volume = {131}, year = {2023}, } @misc{14523, abstract = {see Readme file}, author = {Binysh, Jack and Chakraborty, Indrajit and Chubynsky, Mykyta and Diaz Melian, Vicente L and Waitukaitis, Scott R and Sprittles, James and Souslov, Anton}, publisher = {Zenodo}, title = {{SouslovLab/PRL2023-ModellingLeidenfrostLevitationofSoftElasticSolids: v1.0.1}}, doi = {10.5281/ZENODO.8329143}, year = {2023}, } @inproceedings{14518, abstract = {We consider bidding games, a class of two-player zero-sum graph games. The game proceeds as follows. Both players have bounded budgets. A token is placed on a vertex of a graph, in each turn the players simultaneously submit bids, and the higher bidder moves the token, where we break bidding ties in favor of Player 1. Player 1 wins the game iff the token visits a designated target vertex. We consider, for the first time, poorman discrete-bidding in which the granularity of the bids is restricted and the higher bid is paid to the bank. Previous work either did not impose granularity restrictions or considered Richman bidding (bids are paid to the opponent). While the latter mechanisms are technically more accessible, the former is more appealing from a practical standpoint. Our study focuses on threshold budgets, which is the necessary and sufficient initial budget required for Player 1 to ensure winning against a given Player 2 budget. We first show existence of thresholds. In DAGs, we show that threshold budgets can be approximated with error bounds by thresholds under continuous-bidding and that they exhibit a periodic behavior. We identify closed-form solutions in special cases. We implement and experiment with an algorithm to find threshold budgets.}, author = {Avni, Guy and Meggendorfer, Tobias and Sadhukhan, Suman and Tkadlec, Josef and Zikelic, Dorde}, booktitle = {Frontiers in Artificial Intelligence and Applications}, isbn = {9781643684369}, issn = {0922-6389}, location = {Krakow, Poland}, pages = {141--148}, publisher = {IOS Press}, title = {{Reachability poorman discrete-bidding games}}, doi = {10.3233/FAIA230264}, volume = {372}, year = {2023}, } @article{13096, abstract = {Eukaryotic cells can undergo different forms of programmed cell death, many of which culminate in plasma membrane rupture as the defining terminal event1,2,3,4,5,6,7. Plasma membrane rupture was long thought to be driven by osmotic pressure, but it has recently been shown to be in many cases an active process, mediated by the protein ninjurin-18 (NINJ1). Here we resolve the structure of NINJ1 and the mechanism by which it ruptures membranes. Super-resolution microscopy reveals that NINJ1 clusters into structurally diverse assemblies in the membranes of dying cells, in particular large, filamentous assemblies with branched morphology. A cryo-electron microscopy structure of NINJ1 filaments shows a tightly packed fence-like array of transmembrane α-helices. Filament directionality and stability is defined by two amphipathic α-helices that interlink adjacent filament subunits. The NINJ1 filament features a hydrophilic side and a hydrophobic side, and molecular dynamics simulations show that it can stably cap membrane edges. The function of the resulting supramolecular arrangement was validated by site-directed mutagenesis. Our data thus suggest that, during lytic cell death, the extracellular α-helices of NINJ1 insert into the plasma membrane to polymerize NINJ1 monomers into amphipathic filaments that rupture the plasma membrane. The membrane protein NINJ1 is therefore an interactive component of the eukaryotic cell membrane that functions as an in-built breaking point in response to activation of cell death.}, author = {Degen, Morris and Santos, José Carlos and Pluhackova, Kristyna and Cebrero, Gonzalo and Ramos, Saray and Jankevicius, Gytis and Hartenian, Ella and Guillerm, Undina and Mari, Stefania A. and Kohl, Bastian and Müller, Daniel J. and Schanda, Paul and Maier, Timm and Perez, Camilo and Sieben, Christian and Broz, Petr and Hiller, Sebastian}, issn = {1476-4687}, journal = {Nature}, pages = {1065--1071}, publisher = {Springer Nature}, title = {{Structural basis of NINJ1-mediated plasma membrane rupture in cell death}}, doi = {10.1038/s41586-023-05991-z}, volume = {618}, year = {2023}, } @article{13041, abstract = {A series of triarylamines was synthesised and screened for their suitability as catholytes in redox flow batteries using cyclic voltammetry (CV). Tris(4-aminophenyl)amine was found to be the strongest candidate. Solubility and initial electrochemical performance were promising; however, polymerisation was observed during electrochemical cycling leading to rapid capacity fade prescribed to a loss of accessible active material and the limitation of ion transport processes within the cell. A mixed electrolyte system of H3PO4 and HCl was found to inhibit polymerisation producing oligomers that consumed less active material reducing rates of degradation in the redox flow battery. Under these conditions Coulombic efficiency improved by over 4 %, the maximum number of cycles more than quadrupled and an additional theoretical capacity of 20 % was accessed. This paper is, to our knowledge, the first example of triarylamines as catholytes in all-aqueous redox flow batteries and emphasises the impact supporting electrolytes can have on electrochemical performance.}, author = {Farag, Nadia L. and Jethwa, Rajesh B and Beardmore, Alice E. and Insinna, Teresa and O'Keefe, Christopher A. and Klusener, Peter A.A. and Grey, Clare P. and Wright, Dominic S.}, issn = {1864-564X}, journal = {ChemSusChem}, number = {13}, publisher = {Wiley}, title = {{Triarylamines as catholytes in aqueous organic redox flow batteries}}, doi = {10.1002/cssc.202300128}, volume = {16}, year = {2023}, } @article{13118, abstract = {Under high pressures and temperatures, molecular systems with substantial polarization charges, such as ammonia and water, are predicted to form superionic phases and dense fluid states with dissociating molecules and high electrical conductivity. This behaviour potentially plays a role in explaining the origin of the multipolar magnetic fields of Uranus and Neptune, whose mantles are thought to result from a mixture of H2O, NH3 and CH4 ices. Determining the stability domain, melting curve and electrical conductivity of these superionic phases is therefore crucial for modelling planetary interiors and dynamos. Here we report the melting curve of superionic ammonia up to 300 GPa from laser-driven shock compression of pre-compressed samples and atomistic calculations. We show that ammonia melts at lower temperatures than water above 100 GPa and that fluid ammonia’s electrical conductivity exceeds that of water at conditions predicted by hot, super-adiabatic models for Uranus and Neptune, and enhances the conductivity in their fluid water-rich dynamo layers.}, author = {Hernandez, J.-A. and Bethkenhagen, Mandy and Ninet, S. and French, M. and Benuzzi-Mounaix, A. and Datchi, F. and Guarguaglini, M. and Lefevre, F. and Occelli, F. and Redmer, R. and Vinci, T. and Ravasio, A.}, issn = {1745-2481}, journal = {Nature Physics}, pages = {1280--1285}, publisher = {Springer Nature}, title = {{Melting curve of superionic ammonia at planetary interior conditions}}, doi = {10.1038/s41567-023-02074-8}, volume = {19}, year = {2023}, } @article{13119, abstract = {A density wave (DW) is a fundamental type of long-range order in quantum matter tied to self-organization into a crystalline structure. The interplay of DW order with superfluidity can lead to complex scenarios that pose a great challenge to theoretical analysis. In the past decades, tunable quantum Fermi gases have served as model systems for exploring the physics of strongly interacting fermions, including most notably magnetic ordering1, pairing and superfluidity2, and the crossover from a Bardeen–Cooper–Schrieffer superfluid to a Bose–Einstein condensate3. Here, we realize a Fermi gas featuring both strong, tunable contact interactions and photon-mediated, spatially structured long-range interactions in a transversely driven high-finesse optical cavity. Above a critical long-range interaction strength, DW order is stabilized in the system, which we identify via its superradiant light-scattering properties. We quantitatively measure the variation of the onset of DW order as the contact interaction is varied across the Bardeen–Cooper–Schrieffer superfluid and Bose–Einstein condensate crossover, in qualitative agreement with a mean-field theory. The atomic DW susceptibility varies over an order of magnitude upon tuning the strength and the sign of the long-range interactions below the self-ordering threshold, demonstrating independent and simultaneous control over the contact and long-range interactions. Therefore, our experimental setup provides a fully tunable and microscopically controllable platform for the experimental study of the interplay of superfluidity and DW order.}, author = {Helson, Victor and Zwettler, Timo and Mivehvar, Farokh and Colella, Elvia and Roux, Kevin Etienne Robert and Konishi, Hideki and Ritsch, Helmut and Brantut, Jean Philippe}, issn = {1476-4687}, journal = {Nature}, pages = {716--720}, publisher = {Springer Nature}, title = {{Density-wave ordering in a unitary Fermi gas with photon-mediated interactions}}, doi = {10.1038/s41586-023-06018-3}, volume = {618}, year = {2023}, } @article{12911, abstract = {This paper establishes new connections between many-body quantum systems, One-body Reduced Density Matrices Functional Theory (1RDMFT) and Optimal Transport (OT), by interpreting the problem of computing the ground-state energy of a finite-dimensional composite quantum system at positive temperature as a non-commutative entropy regularized Optimal Transport problem. We develop a new approach to fully characterize the dual-primal solutions in such non-commutative setting. The mathematical formalism is particularly relevant in quantum chemistry: numerical realizations of the many-electron ground-state energy can be computed via a non-commutative version of Sinkhorn algorithm. Our approach allows to prove convergence and robustness of this algorithm, which, to our best knowledge, were unknown even in the two marginal case. Our methods are based on a priori estimates in the dual problem, which we believe to be of independent interest. Finally, the above results are extended in 1RDMFT setting, where bosonic or fermionic symmetry conditions are enforced on the problem.}, author = {Feliciangeli, Dario and Gerolin, Augusto and Portinale, Lorenzo}, issn = {1096-0783}, journal = {Journal of Functional Analysis}, number = {4}, publisher = {Elsevier}, title = {{A non-commutative entropic optimal transport approach to quantum composite systems at positive temperature}}, doi = {10.1016/j.jfa.2023.109963}, volume = {285}, year = {2023}, } @article{13177, abstract = {In this note we study the eigenvalue growth of infinite graphs with discrete spectrum. We assume that the corresponding Dirichlet forms satisfy certain Sobolev-type inequalities and that the total measure is finite. In this sense, the associated operators on these graphs display similarities to elliptic operators on bounded domains in the continuum. Specifically, we prove lower bounds on the eigenvalue growth and show by examples that corresponding upper bounds cannot be established.}, author = {Hua, Bobo and Keller, Matthias and Schwarz, Michael and Wirth, Melchior}, issn = {1088-6826}, journal = {Proceedings of the American Mathematical Society}, number = {8}, pages = {3401--3414}, publisher = {American Mathematical Society}, title = {{Sobolev-type inequalities and eigenvalue growth on graphs with finite measure}}, doi = {10.1090/proc/14361}, volume = {151}, year = {2023}, } @article{14558, abstract = {n the dynamic minimum set cover problem, the challenge is to minimize the update time while guaranteeing a close-to-optimal min{O(log n), f} approximation factor. (Throughout, n, m, f , and C are parameters denoting the maximum number of elements, the number of sets, the frequency, and the cost range.) In the high-frequency range, when f = Ω(log n) , this was achieved by a deterministic O(log n) -approximation algorithm with O(f log n) amortized update time by Gupta et al. [Online and dynamic algorithms for set cover, in Proceedings STOC 2017, ACM, pp. 537–550]. In this paper we consider the low-frequency range, when f = O(log n) , and obtain deterministic algorithms with a (1 + ∈)f -approximation ratio and the following guarantees on the update time. (1) O ((f/∈)-log(Cn)) amortized update time: Prior to our work, the best approximation ratio guaranteed by deterministic algorithms was O(f2) of Bhattacharya, Henzinger, and Italiano [Design of dynamic algorithms via primal-dual method, in Proceedings ICALP 2015, Springer, pp. 206–218]. In contrast, the only result with O(f) -approximation was that of Abboud et al. [Dynamic set cover: Improved algorithms and lower bounds, in Proceedings STOC 2019, ACM, pp. 114–125], who designed a randomized (1+∈)f -approximation algorithm with amortized update time. (2) O(f2/∈3 + (f/∈2).logC) amortized update time: This result improves the above update time bound for most values of f in the low-frequency range, i.e., f=o(log n) . It is also the first result that is independent of m and n. It subsumes the constant amortized update time of Bhattacharya and Kulkarni [Deterministically maintaining a (2 + ∈) -approximate minimum vertex cover in O(1/∈2) amortized update time, in Proceedings SODA 2019, SIAM, pp. 1872–1885] for unweighted dynamic vertex cover (i.e., when f = 2 and C = 1). (3) O((f/∈3).log2(Cn)) worst-case update time: No nontrivial worst-case update time was previously known for the dynamic set cover problem. Our bound subsumes and improves by a logarithmic factor the O(log3n/poly (∈)) worst-case update time for the unweighted dynamic vertex cover problem (i.e., when f = 2 and C =1) of Bhattacharya, Henzinger, and Nanongkai [Fully dynamic approximate maximum matching and minimum vertex cover in O(log3)n worst case update time, in Proceedings SODA 2017, SIAM, pp. 470–489]. We achieve our results via the primal-dual approach, by maintaining a fractional packing solution as a dual certificate. Prior work in dynamic algorithms that employs the primal-dual approach uses a local update scheme that maintains relaxed complementary slackness conditions for every set. For our first result we use instead a global update scheme that does not always maintain complementary slackness conditions. For our second result we combine the global and the local update schema. To achieve our third result we use a hierarchy of background schedulers. It is an interesting open question whether this background scheduler technique can also be used to transform algorithms with amortized running time bounds into algorithms with worst-case running time bounds.}, author = {Bhattacharya, Sayan and Henzinger, Monika H and Nanongkai, Danupon and Wu, Xiaowei}, issn = {1095-7111}, journal = {SIAM Journal on Computing}, number = {5}, pages = {1132--1192}, publisher = {Society for Industrial and Applied Mathematics}, title = {{Deterministic near-optimal approximation algorithms for dynamic set cover}}, doi = {10.1137/21M1428649}, volume = {52}, year = {2023}, } @inproceedings{14559, abstract = {We consider the problem of learning control policies in discrete-time stochastic systems which guarantee that the system stabilizes within some specified stabilization region with probability 1. Our approach is based on the novel notion of stabilizing ranking supermartingales (sRSMs) that we introduce in this work. Our sRSMs overcome the limitation of methods proposed in previous works whose applicability is restricted to systems in which the stabilizing region cannot be left once entered under any control policy. We present a learning procedure that learns a control policy together with an sRSM that formally certifies probability 1 stability, both learned as neural networks. We show that this procedure can also be adapted to formally verifying that, under a given Lipschitz continuous control policy, the stochastic system stabilizes within some stabilizing region with probability 1. Our experimental evaluation shows that our learning procedure can successfully learn provably stabilizing policies in practice.}, author = {Ansaripour, Matin and Chatterjee, Krishnendu and Henzinger, Thomas A and Lechner, Mathias and Zikelic, Dorde}, booktitle = {21st International Symposium on Automated Technology for Verification and Analysis}, isbn = {9783031453281}, issn = {1611-3349}, location = {Singapore, Singapore}, pages = {357--379}, publisher = {Springer Nature}, title = {{Learning provably stabilizing neural controllers for discrete-time stochastic systems}}, doi = {10.1007/978-3-031-45329-8_17}, volume = {14215}, year = {2023}, } @article{14554, abstract = {The Regularised Inertial Dean–Kawasaki model (RIDK) – introduced by the authors and J. Zimmer in earlier works – is a nonlinear stochastic PDE capturing fluctuations around the meanfield limit for large-scale particle systems in both particle density and momentum density. We focus on the following two aspects. Firstly, we set up a Discontinuous Galerkin (DG) discretisation scheme for the RIDK model: we provide suitable definitions of numerical fluxes at the interface of the mesh elements which are consistent with the wave-type nature of the RIDK model and grant stability of the simulations, and we quantify the rate of convergence in mean square to the continuous RIDK model. Secondly, we introduce modifications of the RIDK model in order to preserve positivity of the density (such a feature only holds in a “high-probability sense” for the original RIDK model). By means of numerical simulations, we show that the modifications lead to physically realistic and positive density profiles. In one case, subject to additional regularity constraints, we also prove positivity. Finally, we present an application of our methodology to a system of diffusing and reacting particles. Our Python code is available in open-source format.}, author = {Cornalba, Federico and Shardlow, Tony}, issn = {2804-7214}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis}, number = {5}, pages = {3061--3090}, publisher = {EDP Sciences}, title = {{The regularised inertial Dean' Kawasaki equation: Discontinuous Galerkin approximation and modelling for low-density regime}}, doi = {10.1051/m2an/2023077}, volume = {57}, year = {2023}, } @article{14556, abstract = {Inversions are structural mutations that reverse the sequence of a chromosome segment and reduce the effective rate of recombination in the heterozygous state. They play a major role in adaptation, as well as in other evolutionary processes such as speciation. Although inversions have been studied since the 1920s, they remain difficult to investigate because the reduced recombination conferred by them strengthens the effects of drift and hitchhiking, which in turn can obscure signatures of selection. Nonetheless, numerous inversions have been found to be under selection. Given recent advances in population genetic theory and empirical study, here we review how different mechanisms of selection affect the evolution of inversions. A key difference between inversions and other mutations, such as single nucleotide variants, is that the fitness of an inversion may be affected by a larger number of frequently interacting processes. This considerably complicates the analysis of the causes underlying the evolution of inversions. We discuss the extent to which these mechanisms can be disentangled, and by which approach.}, author = {Berdan, Emma L. and Barton, Nicholas H and Butlin, Roger and Charlesworth, Brian and Faria, Rui and Fragata, Inês and Gilbert, Kimberly J. and Jay, Paul and Kapun, Martin and Lotterhos, Katie E. and Mérot, Claire and Durmaz Mitchell, Esra and Pascual, Marta and Peichel, Catherine L. and Rafajlović, Marina and Westram, Anja M and Schaeffer, Stephen W. and Johannesson, Kerstin and Flatt, Thomas}, issn = {1420-9101}, journal = {Journal of Evolutionary Biology}, publisher = {Wiley}, title = {{How chromosomal inversions reorient the evolutionary process}}, doi = {10.1111/jeb.14242}, year = {2023}, } @article{14555, abstract = {The intricate regulatory processes behind actin polymerization play a crucial role in cellular biology, including essential mechanisms such as cell migration or cell division. However, the self-organizing principles governing actin polymerization are still poorly understood. In this perspective article, we compare the Belousov-Zhabotinsky (BZ) reaction, a classic and well understood chemical oscillator known for its self-organizing spatiotemporal dynamics, with the excitable dynamics of polymerizing actin. While the BZ reaction originates from the domain of inorganic chemistry, it shares remarkable similarities with actin polymerization, including the characteristic propagating waves, which are influenced by geometry and external fields, and the emergent collective behavior. Starting with a general description of emerging patterns, we elaborate on single droplets or cell-level dynamics, the influence of geometric confinements and conclude with collective interactions. Comparing these two systems sheds light on the universal nature of self-organization principles in both living and inanimate systems.}, author = {Riedl, Michael and Sixt, Michael K}, issn = {2296-634X}, journal = {Frontiers in Cell and Developmental Biology}, publisher = {Frontiers}, title = {{The excitable nature of polymerizing actin and the Belousov-Zhabotinsky reaction}}, doi = {10.3389/fcell.2023.1287420}, volume = {11}, year = {2023}, } @article{14543, abstract = {The acyl-CoA-binding domain-containing protein 6 (ACBD6) is ubiquitously expressed, plays a role in the acylation of lipids and proteins, and regulates the N-myristoylation of proteins via N-myristoyltransferase enzymes (NMTs). However, its precise function in cells is still unclear, as is the consequence of ACBD6 defects on human pathophysiology. Utilizing exome sequencing and extensive international data sharing efforts, we identified 45 affected individuals from 28 unrelated families (consanguinity 93%) with bi-allelic pathogenic, predominantly loss-of-function (18/20) variants in ACBD6. We generated zebrafish and Xenopus tropicalis acbd6 knockouts by CRISPR/Cas9 and characterized the role of ACBD6 on protein N-myristoylation with YnMyr chemical proteomics in the model organisms and human cells, with the latter also being subjected further to ACBD6 peroxisomal localization studies. The affected individuals (23 males and 22 females), with ages ranging from 1 to 50 years old, typically present with a complex and progressive disease involving moderate-to-severe global developmental delay/intellectual disability (100%) with significant expressive language impairment (98%), movement disorders (97%), facial dysmorphism (95%), and mild cerebellar ataxia (85%) associated with gait impairment (94%), limb spasticity/hypertonia (76%), oculomotor (71%) and behavioural abnormalities (65%), overweight (59%), microcephaly (39%) and epilepsy (33%). The most conspicuous and common movement disorder was dystonia (94%), frequently leading to early-onset progressive postural deformities (97%), limb dystonia (55%), and cervical dystonia (31%). A jerky tremor in the upper limbs (63%), a mild head tremor (59%), parkinsonism/hypokinesia developing with advancing age (32%), and simple motor and vocal tics were among other frequent movement disorders. Midline brain malformations including corpus callosum abnormalities (70%), hypoplasia/agenesis of the anterior commissure (66%), short midbrain and small inferior cerebellar vermis (38% each), as well as hypertrophy of the clava (24%) were common neuroimaging findings. acbd6-deficient zebrafish and Xenopus models effectively recapitulated many clinical phenotypes reported in patients including movement disorders, progressive neuromotor impairment, seizures, microcephaly, craniofacial dysmorphism, and midbrain defects accompanied by developmental delay with increased mortality over time. Unlike ACBD5, ACBD6 did not show a peroxisomal localisation and ACBD6-deficiency was not associated with altered peroxisomal parameters in patient fibroblasts. Significant differences in YnMyr-labelling were observed for 68 co- and 18 post-translationally N-myristoylated proteins in patient-derived fibroblasts. N-Myristoylation was similarly affected in acbd6-deficient zebrafish and Xenopus tropicalis models, including Fus, Marcks, and Chchd-related proteins implicated in neurological diseases. The present study provides evidence that bi-allelic pathogenic variants in ACBD6 lead to a distinct neurodevelopmental syndrome accompanied by complex and progressive cognitive and movement disorders.}, author = {Kaiyrzhanov, Rauan and Rad, Aboulfazl and Lin, Sheng-Jia and Bertoli-Avella, Aida and Kallemeijn, Wouter W and Godwin, Annie and Zaki, Maha S and Huang, Kevin and Lau, Tracy and Petree, Cassidy and Efthymiou, Stephanie and Ghayoor Karimiani, Ehsan and Hempel, Maja and Normand, Elizabeth A and Rudnik-Schöneborn, Sabine and Schatz, Ulrich A and Baggelaar, Marc P and Ilyas, Muhammad and Sultan, Tipu and Alvi, Javeria Raza and Ganieva, Manizha and Fowler, Ben and Aanicai, Ruxandra and Akay Tayfun, Gulsen and Al Saman, Abdulaziz and Alswaid, Abdulrahman and Amiri, Nafise and Asilova, Nilufar and Shotelersuk, Vorasuk and Yeetong, Patra and Azam, Matloob and Babaei, Meisam and Bahrami Monajemi, Gholamreza and Mohammadi, Pouria and Samie, Saeed and Banu, Selina Husna and Basto, Jorge Pinto and Kortüm, Fanny and Bauer, Mislen and Bauer, Peter and Beetz, Christian and Garshasbi, Masoud and Hameed Issa, Awatif and Eyaid, Wafaa and Ahmed, Hind and Hashemi, Narges and Hassanpour, Kazem and Herman, Isabella and Ibrohimov, Sherozjon and Abdul-Majeed, Ban A and Imdad, Maria and Isrofilov, Maksudjon and Kaiyal, Qassem and Khan, Suliman and Kirmse, Brian and Koster, Janet and Lourenço, Charles Marques and Mitani, Tadahiro and Moldovan, Oana and Murphy, David and Najafi, Maryam and Pehlivan, Davut and Rocha, Maria Eugenia and Salpietro, Vincenzo and Schmidts, Miriam and Shalata, Adel and Mahroum, Mohammad and Talbeya, Jawabreh Kassem and Taylor, Robert W and Vazquez, Dayana and Vetro, Annalisa and Waterham, Hans R and Zaman, Mashaya and Schrader, Tina A and Chung, Wendy K and Guerrini, Renzo and Lupski, James R and Gleeson, Joseph and Suri, Mohnish and Jamshidi, Yalda and Bhatia, Kailash P and Vona, Barbara and Schrader, Michael and Severino, Mariasavina and Guille, Matthew and Tate, Edward W and Varshney, Gaurav K and Houlden, Henry and Maroofian, Reza}, issn = {1460-2156}, journal = {Brain}, keywords = {Neurology (clinical)}, publisher = {Oxford University Press}, title = {{Bi-allelic ACBD6 variants lead to a neurodevelopmental syndrome with progressive and complex movement disorders}}, doi = {10.1093/brain/awad380}, year = {2023}, } @article{14542, abstract = {It is a remarkable property of BCS theory that the ratio of the energy gap at zero temperature Ξ and the critical temperature Tc is (approximately) given by a universal constant, independent of the microscopic details of the fermionic interaction. This universality has rigorously been proven quite recently in three spatial dimensions and three different limiting regimes: weak coupling, low density and high density. The goal of this short note is to extend the universal behavior to lower dimensions d=1,2 and give an exemplary proof in the weak coupling limit.}, author = {Henheik, Sven Joscha and Lauritsen, Asbjørn Bækgaard and Roos, Barbara}, issn = {1793-6659}, journal = {Reviews in Mathematical Physics}, publisher = {World Scientific Publishing}, title = {{Universality in low-dimensional BCS theory}}, doi = {10.1142/s0129055x2360005x}, year = {2023}, } @article{14553, abstract = {Quantum state tomography is an essential component of modern quantum technology. In application to continuous-variable harmonic-oscillator systems, such as the electromagnetic field, existing tomography methods typically reconstruct the state in discrete bases, and are hence limited to states with relatively low amplitudes and energies. Here, we overcome this limitation by utilizing a feed-forward neural network to obtain the density matrix directly in the continuous position basis. An important benefit of our approach is the ability to choose specific regions in the phase space for detailed reconstruction. This results in a relatively slow scaling of the amount of resources required for the reconstruction with the state amplitude, and hence allows us to dramatically increase the range of amplitudes accessible with our method.}, author = {Fedotova, Ekaterina and Kuznetsov, Nikolai and Tiunov, Egor and Ulanov, A. E. and Lvovsky, A. I.}, issn = {2469-9934}, journal = {Physical Review A}, number = {4}, publisher = {American Physical Society}, title = {{Continuous-variable quantum tomography of high-amplitude states}}, doi = {10.1103/PhysRevA.108.042430}, volume = {108}, year = {2023}, } @article{14557, abstract = {Motivated by a problem posed in [10], we investigate the closure operators of the category SLatt of join semilattices and its subcategory SLattO of join semilattices with bottom element. In particular, we show that there are only finitely many closure operators of both categories, and provide a complete classification. We use this result to deduce the known fact that epimorphisms of SLatt and SLattO are surjective. We complement the paper with two different proofs of this result using either generators or Isbell’s zigzag theorem.}, author = {Dikranjan, D. and Giordano Bruno, A. and Zava, Nicolò}, issn = {1727-933X}, journal = {Quaestiones Mathematicae}, number = {S1}, pages = {191--221}, publisher = {Taylor & Francis}, title = {{Epimorphisms and closure operators of categories of semilattices}}, doi = {10.2989/16073606.2023.2247731}, volume = {46}, year = {2023}, } @article{14552, abstract = {Interactions between plants and herbivores are central in most ecosystems, but their strength is highly variable. The amount of variability within a system is thought to influence most aspects of plant-herbivore biology, from ecological stability to plant defense evolution. Our understanding of what influences variability, however, is limited by sparse data. We collected standardized surveys of herbivory for 503 plant species at 790 sites across 116° of latitude. With these data, we show that within-population variability in herbivory increases with latitude, decreases with plant size, and is phylogenetically structured. Differences in the magnitude of variability are thus central to how plant-herbivore biology varies across macroscale gradients. We argue that increased focus on interaction variability will advance understanding of patterns of life on Earth.}, author = {Robinson, M. L. and Hahn, P. G. and Inouye, B. D. and Underwood, N. and Whitehead, S. R. and Abbott, K. C. and Bruna, E. M. and Cacho, N. I. and Dyer, L. A. and Abdala-Roberts, L. and Allen, W. J. and Andrade, J. F. and Angulo, D. F. and Anjos, D. and Anstett, D. N. and Bagchi, R. and Bagchi, S. and Barbosa, M. and Barrett, S. and Baskett, Carina and Ben-Simchon, E. and Bloodworth, K. J. and Bronstein, J. L. and Buckley, Y. M. and Burghardt, K. T. and Bustos-Segura, C. and Calixto, E. S. and Carvalho, R. L. and Castagneyrol, B. and Chiuffo, M. C. and Cinoğlu, D. and Cinto Mejía, E. and Cock, M. C. and Cogni, R. and Cope, O. L. and Cornelissen, T. and Cortez, D. R. and Crowder, D. W. and Dallstream, C. and Dáttilo, W. and Davis, J. K. and Dimarco, R. D. and Dole, H. E. and Egbon, I. N. and Eisenring, M. and Ejomah, A. and Elderd, B. D. and Endara, M. J. and Eubanks, M. D. and Everingham, S. E. and Farah, K. N. and Farias, R. P. and Fernandes, A. P. and Fernandes, G. W. and Ferrante, M. and Finn, A. and Florjancic, G. A. and Forister, M. L. and Fox, Q. N. and Frago, E. and França, F. M. and Getman-Pickering, A. S. and Getman-Pickering, Z. and Gianoli, E. and Gooden, B. and Gossner, M. M. and Greig, K. A. and Gripenberg, S. and Groenteman, R. and Grof-Tisza, P. and Haack, N. and Hahn, L. and Haq, S. M. and Helms, A. M. and Hennecke, J. and Hermann, S. L. and Holeski, L. M. and Holm, S. and Hutchinson, M. C. and Jackson, E. E. and Kagiya, S. and Kalske, A. and Kalwajtys, M. and Karban, R. and Kariyat, R. and Keasar, T. and Kersch-Becker, M. F. and Kharouba, H. M. and Kim, T. N. and Kimuyu, D. M. and Kluse, J. and Koerner, S. E. and Komatsu, K. J. and Krishnan, S. and Laihonen, M. and Lamelas-López, L. and Lascaleia, M. C. and Lecomte, N. and Lehn, C. R. and Li, X. and Lindroth, R. L. and Lopresti, E. F. and Losada, M. and Louthan, A. M. and Luizzi, V. J. and Lynch, S. C. and Lynn, J. S. and Lyon, N. J. and Maia, L. F. and Maia, R. A. and Mannall, T. L. and Martin, B. S. and Massad, T. J. and Mccall, A. C. and Mcgurrin, K. and Merwin, A. C. and Mijango-Ramos, Z. and Mills, C. H. and Moles, A. T. and Moore, C. M. and Moreira, X. and Morrison, C. R. and Moshobane, M. C. and Muola, A. and Nakadai, R. and Nakajima, K. and Novais, S. and Ogbebor, C. O. and Ohsaki, H. and Pan, V. S. and Pardikes, N. A. and Pareja, M. and Parthasarathy, N. and Pawar, R. R. and Paynter, Q. and Pearse, I. S. and Penczykowski, R. M. and Pepi, A. A. and Pereira, C. C. and Phartyal, S. S. and Piper, F. I. and Poveda, K. and Pringle, E. G. and Puy, J. and Quijano, T. and Quintero, C. and Rasmann, S. and Rosche, C. and Rosenheim, L. Y. and Rosenheim, J. A. and Runyon, J. B. and Sadeh, A. and Sakata, Y. and Salcido, D. M. and Salgado-Luarte, C. and Santos, B. A. and Sapir, Y. and Sasal, Y. and Sato, Y. and Sawant, M. and Schroeder, H. and Schumann, I. and Segoli, M. and Segre, H. and Shelef, O. and Shinohara, N. and Singh, R. P. and Smith, D. S. and Sobral, M. and Stotz, G. C. and Tack, A. J.M. and Tayal, M. and Tooker, J. F. and Torrico-Bazoberry, D. and Tougeron, K. and Trowbridge, A. M. and Utsumi, S. and Uyi, O. and Vaca-Uribe, J. L. and Valtonen, A. and Van Dijk, L. J.A. and Vandvik, V. and Villellas, J. and Waller, L. P. and Weber, M. G. and Yamawo, A. and Yim, S. and Zarnetske, P. L. and Zehr, L. N. and Zhong, Z. and Wetzel, W. C.}, issn = {1095-9203}, journal = {Science}, number = {6671}, pages = {679--683}, publisher = {AAAS}, title = {{Plant size, latitude, and phylogeny explain within-population variability in herbivory}}, doi = {10.1126/science.adh8830}, volume = {382}, year = {2023}, } @article{14551, abstract = {Methylation of CG dinucleotides (mCGs), which regulates eukaryotic genome functions, is epigenetically propagated by Dnmt1/MET1 methyltransferases. How mCG is established and transmitted across generations despite imperfect enzyme fidelity is unclear. Whether mCG variation in natural populations is governed by genetic or epigenetic inheritance also remains mysterious. Here, we show that MET1 de novo activity, which is enhanced by existing proximate methylation, seeds and stabilizes mCG in Arabidopsis thaliana genes. MET1 activity is restricted by active demethylation and suppressed by histone variant H2A.Z, producing localized mCG patterns. Based on these observations, we develop a stochastic mathematical model that precisely recapitulates mCG inheritance dynamics and predicts intragenic mCG patterns and their population-scale variation given only CG site spacing. Our results demonstrate that intragenic mCG establishment, inheritance, and variance constitute a unified epigenetic process, revealing that intragenic mCG undergoes large, millennia-long epigenetic fluctuations and can therefore mediate evolution on this timescale.}, author = {Briffa, Amy and Hollwey, Elizabeth and Shahzad, Zaigham and Moore, Jonathan D. and Lyons, David B. and Howard, Martin and Zilberman, Daniel}, issn = {2405-4720}, journal = {Cell Systems}, number = {11}, pages = {953--967}, publisher = {Elsevier}, title = {{Millennia-long epigenetic fluctuations generate intragenic DNA methylation variance in Arabidopsis populations}}, doi = {10.1016/j.cels.2023.10.007}, volume = {14}, year = {2023}, } @misc{14579, abstract = {This is associated with our paper "Plant size, latitude, and phylogeny explain within-population variability in herbivory" published in Science. }, author = {Wetzel, William}, publisher = {Zenodo}, title = {{HerbVar-Network/HV-Large-Patterns-MS-public: v1.0.0}}, doi = {10.5281/ZENODO.8133117}, year = {2023}, } @article{12334, abstract = {Regulation of the Arp2/3 complex is required for productive nucleation of branched actin networks. An emerging aspect of regulation is the incorporation of subunit isoforms into the Arp2/3 complex. Specifically, both ArpC5 subunit isoforms, ArpC5 and ArpC5L, have been reported to fine-tune nucleation activity and branch junction stability. We have combined reverse genetics and cellular structural biology to describe how ArpC5 and ArpC5L differentially affect cell migration. Both define the structural stability of ArpC1 in branch junctions and, in turn, by determining protrusion characteristics, affect protein dynamics and actin network ultrastructure. ArpC5 isoforms also affect the positioning of members of the Ena/Vasodilator-stimulated phosphoprotein (VASP) family of actin filament elongators, which mediate ArpC5 isoform–specific effects on the actin assembly level. Our results suggest that ArpC5 and Ena/VASP proteins are part of a signaling pathway enhancing cell migration.}, author = {Fäßler, Florian and Javoor, Manjunath and Datler, Julia and Döring, Hermann and Hofer, Florian and Dimchev, Georgi A and Hodirnau, Victor-Valentin and Faix, Jan and Rottner, Klemens and Schur, Florian KM}, issn = {2375-2548}, journal = {Science Advances}, keywords = {Multidisciplinary}, number = {3}, publisher = {American Association for the Advancement of Science}, title = {{ArpC5 isoforms regulate Arp2/3 complex–dependent protrusion through differential Ena/VASP positioning}}, doi = {10.1126/sciadv.add6495}, volume = {9}, year = {2023}, } @misc{14562, abstract = {Regulation of the Arp2/3 complex is required for productive nucleation of branched actin networks. An emerging aspect of regulation is the incorporation of subunit isoforms into the Arp2/3 complex. Specifically, both ArpC5 subunit isoforms, ArpC5 and ArpC5L, have been reported to fine-tune nucleation activity and branch junction stability. We have combined reverse genetics and cellular structural biology to describe how ArpC5 and ArpC5L differentially affect cell migration. Both define the structural stability of ArpC1 in branch junctions and, in turn, by determining protrusion characteristics, affect protein dynamics and actin network ultrastructure. ArpC5 isoforms also affect the positioning of members of the Ena/Vasodilator-stimulated phosphoprotein (VASP) family of actin filament elongators, which mediate ArpC5 isoform–specific effects on the actin assembly level. Our results suggest that ArpC5 and Ena/VASP proteins are part of a signaling pathway enhancing cell migration. }, author = {Schur, Florian KM}, publisher = {Institute of Science and Technology Austria}, title = {{Research data of the publication "ArpC5 isoforms regulate Arp2/3 complex-dependent protrusion through differential Ena/VASP positioning"}}, doi = {10.15479/AT:ISTA:14562}, year = {2023}, } @misc{14502, abstract = {A precise quantitative description of the ultrastructural characteristics underlying biological mechanisms is often key to their understanding. This is particularly true for dynamic extra- and intracellular filamentous assemblies, playing a role in cell motility, cell integrity, cytokinesis, tissue formation and maintenance. For example, genetic manipulation or modulation of actin regulatory proteins frequently manifests in changes of the morphology, dynamics, and ultrastructural architecture of actin filament-rich cell peripheral structures, such as lamellipodia or filopodia. However, the observed ultrastructural effects often remain subtle and require sufficiently large datasets for appropriate quantitative analysis. The acquisition of such large datasets has been enabled by recent advances in high-throughput cryo-electron tomography (cryo-ET) methods. This also necessitates the development of complementary approaches to maximize the extraction of relevant biological information. We have developed a computational toolbox for the semi-automatic quantification of segmented and vectorized fila- mentous networks from pre-processed cryo-electron tomograms, facilitating the analysis and cross-comparison of multiple experimental conditions. GUI-based components simplify the processing of data and allow users to obtain a large number of ultrastructural parameters describing filamentous assemblies. We demonstrate the feasibility of this workflow by analyzing cryo-ET data of untreated and chemically perturbed branched actin filament networks and that of parallel actin filament arrays. In principle, the computational toolbox presented here is applicable for data analysis comprising any type of filaments in regular (i.e. parallel) or random arrangement. We show that it can ease the identification of key differences between experimental groups and facilitate the in-depth analysis of ultrastructural data in a time-efficient manner.}, author = {Dimchev, Georgi A and Amiri, Behnam and Fäßler, Florian and Falcke, Martin and Schur, Florian KM}, keywords = {cryo-electron tomography, actin cytoskeleton, toolbox}, publisher = {Institute of Science and Technology Austria}, title = {{Computational toolbox for ultrastructural quantitative analysis of filament networks in cryo-ET data}}, doi = {10.15479/AT:ISTA:14502}, year = {2023}, } @article{13342, abstract = {Motile cells moving in multicellular organisms encounter microenvironments of locally heterogeneous mechanochemical composition. Individual compositional parameters like chemotactic signals, adhesiveness, and pore sizes are well known to be sensed by motile cells, providing individual guidance cues for cellular pathfinding. However, motile cells encounter diverse mechanochemical signals at the same time, raising the question of how cells respond to locally diverse and potentially competing signals on their migration routes. Here, we reveal that motile amoeboid cells require nuclear repositioning, termed nucleokinesis, for adaptive pathfinding in heterogeneous mechanochemical microenvironments. Using mammalian immune cells and the amoebaDictyostelium discoideum, we discover that frequent, rapid and long-distance nucleokinesis is a basic component of amoeboid pathfinding, enabling cells to reorientate quickly between locally competing cues. Amoeboid nucleokinesis comprises a two-step cell polarity switch and is driven by myosin II-forces, sliding the nucleus from a ‘losing’ to the ‘winning’ leading edge to re-adjust the nuclear to the cellular path. Impaired nucleokinesis distorts fast path adaptions and causes cellular arrest in the microenvironment. Our findings establish that nucleokinesis is required for amoeboid cell navigation. Given that motile single-cell amoebae, many immune cells, and some cancer cells utilize an amoeboid migration strategy, these results suggest that amoeboid nucleokinesis underlies cellular navigation during unicellular biology, immunity, and disease.}, author = {Kroll, Janina and Hauschild, Robert and Kuznetcov, Arthur and Stefanowski, Kasia and Hermann, Monika D. and Merrin, Jack and Shafeek, Lubuna B and Müller-Taubenberger, Annette and Renkawitz, Jörg}, issn = {1460-2075}, journal = {EMBO Journal}, publisher = {Embo Press}, title = {{Adaptive pathfinding by nucleokinesis during amoeboid migration}}, doi = {10.15252/embj.2023114557}, year = {2023}, } @article{14610, abstract = {AbstractEndomembrane damage represents a form of stress that is detrimental for eukaryotic cells1,2. To cope with this threat, cells possess mechanisms that repair the damage and restore cellular homeostasis3–7. Endomembrane damage also results in organelle instability and the mechanisms by which cells stabilize damaged endomembranes to enable membrane repair remains unknown. Here, by combining in vitro and in cellulo studies with computational modelling we uncover a biological function for stress granules whereby these biomolecular condensates form rapidly at endomembrane damage sites and act as a plug that stabilizes the ruptured membrane. Functionally, we demonstrate that stress granule formation and membrane stabilization enable efficient repair of damaged endolysosomes, through both ESCRT (endosomal sorting complex required for transport)-dependent and independent mechanisms. We also show that blocking stress granule formation in human macrophages creates a permissive environment for Mycobacterium tuberculosis, a human pathogen that exploits endomembrane damage to survive within the host.}, author = {Bussi, Claudio and Mangiarotti, Agustín and Vanhille-Campos, Christian Eduardo and Aylan, Beren and Pellegrino, Enrica and Athanasiadi, Natalia and Fearns, Antony and Rodgers, Angela and Franzmann, Titus M. and Šarić, Anđela and Dimova, Rumiana and Gutierrez, Maximiliano G.}, issn = {1476-4687}, journal = {Nature}, keywords = {Multidisciplinary}, publisher = {Springer Nature}, title = {{Stress granules plug and stabilize damaged endolysosomal membranes}}, doi = {10.1038/s41586-023-06726-w}, year = {2023}, } @misc{14472, abstract = {Data related to the following paper: "Stress granules plug and stabilize damaged endolysosomal membranes" (https://doi.org/10.1038/s41586-023-06726-w) Abstract: Endomembrane damage represents a form of stress that is detrimental for eukaryotic cells. To cope with this threat, cells possess mechanisms that repair the damage and restore cellular homeostasis. Endomembrane damage also results in organelle instability and the mechanisms by which cells stabilize damaged endomembranes to enable membrane repair remains unknown. In this work we use a minimal coarse-grained molecular dynamics system to explore how lipid vesicles undergoing poration in a protein-rich medium can be plugged and stabilised by condensate formation. The solution of proteins in and out of the vesicle is described by beads dispersed in implicit solvent. The membrane is described as a one-bead-thick fluid elastic layer of mechanical properties that mimic biological membranes. We tune the interactions between solution beads in the different compartments to capture the differences between the cytoplasmic and endosomal protein solutions and explore how the system responds to different degrees of membrane poration. We find that, in the right interaction regime, condensates form rapidly at the damage site upon solution mixing and act as a plug that prevents futher mixing and destabilisation of the vesicle. Further, when the condensate can interact with the membrane (wetting interactions) we find that it mediates pore sealing and membrane repair. This research is part of the work published in "Stress granules plug and stabilize damaged endolysosomal membranes", Bussi et al, Nature, 2023 - 10.1038/s41586-023-06726-w.}, author = {Vanhille-Campos, Christian Eduardo and Šarić, Anđela}, publisher = {Institute of Science and Technology Austria}, title = {{Stress granules plug and stabilize damaged endolysosomal membranes}}, doi = {10.15479/AT:ISTA:14472}, year = {2023}, } @article{12747, abstract = {Muscle degeneration is the most prevalent cause for frailty and dependency in inherited diseases and ageing. Elucidation of pathophysiological mechanisms, as well as effective treatments for muscle diseases, represents an important goal in improving human health. Here, we show that the lipid synthesis enzyme phosphatidylethanolamine cytidyltransferase (PCYT2/ECT) is critical to muscle health. Human deficiency in PCYT2 causes a severe disease with failure to thrive and progressive weakness. pcyt2-mutant zebrafish and muscle-specific Pcyt2-knockout mice recapitulate the participant phenotypes, with failure to thrive, progressive muscle weakness and accelerated ageing. Mechanistically, muscle Pcyt2 deficiency affects cellular bioenergetics and membrane lipid bilayer structure and stability. PCYT2 activity declines in ageing muscles of mice and humans, and adeno-associated virus-based delivery of PCYT2 ameliorates muscle weakness in Pcyt2-knockout and old mice, offering a therapy for individuals with a rare disease and muscle ageing. Thus, PCYT2 plays a fundamental and conserved role in vertebrate muscle health, linking PCYT2 and PCYT2-synthesized lipids to severe muscle dystrophy and ageing.}, author = {Cikes, Domagoj and Elsayad, Kareem and Sezgin, Erdinc and Koitai, Erika and Ferenc, Torma and Orthofer, Michael and Yarwood, Rebecca and Heinz, Leonhard X. and Sedlyarov, Vitaly and Darwish-Miranda, Nasser and Taylor, Adrian and Grapentine, Sophie and al-Murshedi, Fathiya and Abot, Anne and Weidinger, Adelheid and Kutchukian, Candice and Sanchez, Colline and Cronin, Shane J. F. and Novatchkova, Maria and Kavirayani, Anoop and Schuetz, Thomas and Haubner, Bernhard and Haas, Lisa and Hagelkruys, Astrid and Jackowski, Suzanne and Kozlov, Andrey and Jacquemond, Vincent and Knauf, Claude and Superti-Furga, Giulio and Rullman, Eric and Gustafsson, Thomas and McDermot, John and Lowe, Martin and Radak, Zsolt and Chamberlain, Jeffrey S. and Bakovic, Marica and Banka, Siddharth and Penninger, Josef M.}, issn = {2522-5812}, journal = {Nature Metabolism}, keywords = {Cell Biology, Physiology (medical), Endocrinology, Diabetes and Metabolism, Internal Medicine}, pages = {495--515}, publisher = {Springer Nature}, title = {{PCYT2-regulated lipid biosynthesis is critical to muscle health and ageing}}, doi = {10.1038/s42255-023-00766-2}, volume = {5}, year = {2023}, } @article{14605, abstract = {The phonon transport mechanisms and ultralow lattice thermal conductivities (κL) in silver halide AgX (X=Cl,Br,I) compounds are not yet well understood. Herein, we study the lattice dynamics and thermal property of AgX under the framework of perturbation theory and the two-channel Wigner thermal transport model based on accurate machine learning potentials. We find that an accurate extraction of the third-order atomic force constants from largely displaced configurations is significant for the calculation of the κL of AgX, and the coherence thermal transport is also non-negligible. In AgI, however, the calculated κL still considerably overestimates the experimental values even including four-phonon scatterings. Molecular dynamics (MD) simulations using machine learning potential suggest an important role of the higher-than-fourth-order lattice anharmonicity in the low-frequency phonon linewidths of AgI at room temperature, which can be related to the simultaneous restrictions of the three- and four-phonon phase spaces. The κL of AgI calculated using MD phonon lifetimes including full-order lattice anharmonicity shows a better agreement with experiments.}, author = {Ouyang, Niuchang and Zeng, Zezhu and Wang, Chen and Wang, Qi and Chen, Yue}, issn = {2469-9969}, journal = {Physical Review B}, number = {17}, publisher = {American Physical Society}, title = {{Role of high-order lattice anharmonicity in the phonon thermal transport of silver halide AgX (X=Cl,Br, I)}}, doi = {10.1103/PhysRevB.108.174302}, volume = {108}, year = {2023}, } @inproceedings{14609, abstract = {Distributed Key Generation (DKG) is a technique to bootstrap threshold cryptosystems without a trusted party. DKG is an essential building block to many decentralized protocols such as randomness beacons, threshold signatures, Byzantine consensus, and multiparty computation. While significant progress has been made recently, existing asynchronous DKG constructions are inefficient when the reconstruction threshold is larger than one-third of the total nodes. In this paper, we present a simple and concretely efficient asynchronous DKG (ADKG) protocol among n = 3t + 1 nodes that can tolerate up to t malicious nodes and support any reconstruction threshold ℓ ≥ t. Our protocol has an expected O(κn3) communication cost, where κ is the security parameter, and only assumes the hardness of the Discrete Logarithm. The core ingredient of our ADKG protocol is an asynchronous protocol to secret share a random polynomial of degree ℓ ≥ t, which has other applications, such as asynchronous proactive secret sharing and asynchronous multiparty computation. We implement our high-threshold ADKG protocol and evaluate it using a network of up to 128 geographically distributed nodes. Our evaluation shows that our high-threshold ADKG protocol reduces the running time by 90% and bandwidth usage by 80% over the state-of-the-art.}, author = {Das, Sourav and Xiang, Zhuolun and Kokoris Kogias, Eleftherios and Ren, Ling}, booktitle = {32nd USENIX Security Symposium}, isbn = {9781713879497}, location = {Anaheim, CA, United States}, pages = {5359--5376}, publisher = {Usenix}, title = {{Practical asynchronous high-threshold distributed key generation and distributed polynomial sampling}}, volume = {8}, year = {2023}, } @article{14603, abstract = {Computing the solubility of crystals in a solvent using atomistic simulations is notoriously challenging due to the complexities and convergence issues associated with free-energy methods, as well as the slow equilibration in direct-coexistence simulations. This paper introduces a molecular-dynamics workflow that simplifies and robustly computes the solubility of molecular or ionic crystals. This method is considerably more straightforward than the state-of-the-art, as we have streamlined and optimised each step of the process. Specifically, we calculate the chemical potential of the crystal using the gas-phase molecule as a reference state, and employ the S0 method to determine the concentration dependence of the chemical potential of the solute. We use this workflow to predict the solubilities of sodium chloride in water, urea polymorphs in water, and paracetamol polymorphs in both water and ethanol. Our findings indicate that the predicted solubility is sensitive to the chosen potential energy surface. Furthermore, we note that the harmonic approximation often fails for both molecular crystals and gas molecules at or above room temperature, and that the assumption of an ideal solution becomes less valid for highly soluble substances.}, author = {Reinhardt, Aleks and Chew, Pin Yu and Cheng, Bingqing}, issn = {1089-7690}, journal = {Journal of Chemical Physics}, number = {18}, publisher = {AIP Publishing}, title = {{A streamlined molecular-dynamics workflow for computing solubilities of molecular and ionic crystals}}, doi = {10.1063/5.0173341}, volume = {159}, year = {2023}, } @article{14604, abstract = {Sex chromosomes have evolved independently multiple times, but why some are conserved for more than 100 million years whereas others turnover rapidly remains an open question. Here, we examine the homology of sex chromosomes across nine orders of insects, plus the outgroup springtails. We find that the X chromosome is likely homologous across insects and springtails; the only exception is in the Lepidoptera, which has lost the X and now has a ZZ/ZW sex-chromosome system. These results suggest the ancestral insect X chromosome has persisted for more than 450 million years—the oldest known sex chromosome to date. Further, we propose that the shrinking of gene content the dipteran X chromosome has allowed for a burst of sex-chromosome turnover that is absent from other speciose insect orders.}, author = {Toups, Melissa A and Vicoso, Beatriz}, issn = {1558-5646}, journal = {Evolution}, number = {11}, pages = {2504--2511}, publisher = {Oxford University Press}, title = {{The X chromosome of insects likely predates the origin of class Insecta}}, doi = {10.1093/evolut/qpad169}, volume = {77}, year = {2023}, } @misc{14616, abstract = {Sex chromosomes have evolved independently multiple times, but why some are conserved for more than 100 million years whereas others turnover rapidly remains an open question. Here, we examine the homology of sex chromosomes across nine orders of insects, plus the outgroup springtails. We find that the X chromosome is likely homologous across insects and springtails; the only exception is in the Lepidoptera, which has lost the X and now has a ZZ/ZW sex chromosome system. These results suggest the ancestral insect X chromosome has persisted for more than 450 million years – the oldest known sex chromosome to date. Further, we propose that the shrinking of gene content of the Dipteran X chromosome has allowed for a burst of sex-chromosome turnover that is absent from other speciose insect orders.}, author = {Toups, Melissa A and Vicoso, Beatriz}, publisher = {Dryad}, title = {{The X chromosome of insects likely predates the origin of Class Insecta}}, doi = {10.5061/DRYAD.HX3FFBGKT}, year = {2023}, } @misc{14617, abstract = {Sex chromosomes have evolved independently multiple times, but why some are conserved for more than 100 million years whereas others turnover rapidly remains an open question. Here, we examine the homology of sex chromosomes across nine orders of insects, plus the outgroup springtails. We find that the X chromosome is likely homologous across insects and springtails; the only exception is in the Lepidoptera, which has lost the X and now has a ZZ/ZW sex chromosome system. These results suggest the ancestral insect X chromosome has persisted for more than 450 million years – the oldest known sex chromosome to date. Further, we propose that the shrinking of gene content of the Dipteran X chromosome has allowed for a burst of sex-chromosome turnover that is absent from other speciose insect orders.}, author = {Toups, Melissa A and Vicoso, Beatriz}, publisher = {Zenodo}, title = {{The X chromosome of insects likely predates the origin of Class Insecta}}, doi = {10.5281/ZENODO.8138705}, year = {2023}, } @misc{14619, abstract = {Data underlying the publication "A streamlined molecular-dynamics workflow for computing solubilities of molecular and ionic crystals" (DOI https://doi.org/10.1063/5.0173341).}, author = {Cheng, Bingqing}, publisher = {Zenodo}, title = {{BingqingCheng/solubility: V1.0}}, doi = {10.5281/ZENODO.8398094}, year = {2023}, } @article{14564, abstract = {Cumulus parameterization (CP) in state‐of‐the‐art global climate models is based on the quasi‐equilibrium assumption (QEA), which views convection as the action of an ensemble of cumulus clouds, in a state of equilibrium with respect to a slowly varying atmospheric state. This view is not compatible with the organization and dynamical interactions across multiple scales of cloud systems in the tropics and progress in this research area was slow over decades despite the widely recognized major shortcomings. Novel ideas on how to represent key physical processes of moist convection‐large‐scale interaction to overcome the QEA have surged recently. The stochastic multicloud model (SMCM) CP in particular mimics the dynamical interactions of multiple cloud types that characterize organized tropical convection. Here, the SMCM is used to modify the Zhang‐McFarlane (ZM) CP by changing the way in which the bulk mass flux and bulk entrainment and detrainment rates are calculated. This is done by introducing a stochastic ensemble of plumes characterized by randomly varying detrainment level distributions based on the cloud area fraction of the SMCM. The SMCM is here extended to include shallow cumulus clouds resulting in a unified shallow‐deep CP. The new stochastic multicloud plume CP is validated against the control ZM scheme in the context of the single column Community Climate Model of the National Center for Atmospheric Research using data from both tropical ocean and midlatitude land convection. Some key features of the SMCM CP such as it capability to represent the tri‐modal nature of organized convection are emphasized.}, author = {Khouider, B. and GOSWAMI, BIDYUT B and Phani, R. and Majda, A. J.}, issn = {1942-2466}, journal = {Journal of Advances in Modeling Earth Systems}, keywords = {General Earth and Planetary Sciences, Environmental Chemistry, Global and Planetary Change}, number = {11}, publisher = {American Geophysical Union}, title = {{A shallow‐deep unified stochastic mass flux cumulus parameterization in the single column community climate model}}, doi = {10.1029/2022ms003391}, volume = {15}, year = {2023}, } @article{12789, abstract = {Experiments have shown that charge distributions of granular materials are non-Gaussian, with broad tails that indicate many particles with high charge. This observation has consequences for the behavior of granular materials in many settings, and may bear relevance to the underlying charge transfer mechanism. However, there is the unaddressed possibility that broad tails arise due to experimental uncertainties, as determining the shapes of tails is nontrivial. Here we show that measurement uncertainties can indeed account for most of the tail broadening previously observed. The clue that reveals this is that distributions are sensitive to the electric field at which they are measured; ones measured at low (high) fields have larger (smaller) tails. Accounting for sources of uncertainty, we reproduce this broadening in silico. Finally, we use our results to back out the true charge distribution without broadening, which we find is still non-Guassian, though with substantially different behavior at the tails and indicating significantly fewer highly charged particles. These results have implications in many natural settings where electrostatic interactions, especially among highly charged particles, strongly affect granular behavior.}, author = {Mujica, Nicolás and Waitukaitis, Scott R}, issn = {2470-0053}, journal = {Physical Review E}, number = {3}, publisher = {American Physical Society}, title = {{Accurate determination of the shapes of granular charge distributions}}, doi = {10.1103/PhysRevE.107.034901}, volume = {107}, year = {2023}, } @inproceedings{13238, abstract = {We consider a natural problem dealing with weighted packet selection across a rechargeable link, which e.g., finds applications in cryptocurrency networks. The capacity of a link (u, v) is determined by how much nodes u and v allocate for this link. Specifically, the input is a finite ordered sequence of packets that arrive in both directions along a link. Given (u, v) and a packet of weight x going from u to v, node u can either accept or reject the packet. If u accepts the packet, the capacity on link (u, v) decreases by x. Correspondingly, v’s capacity on (u, v) increases by x. If a node rejects the packet, this will entail a cost affinely linear in the weight of the packet. A link is “rechargeable” in the sense that the total capacity of the link has to remain constant, but the allocation of capacity at the ends of the link can depend arbitrarily on the nodes’ decisions. The goal is to minimise the sum of the capacity injected into the link and the cost of rejecting packets. We show that the problem is NP-hard, but can be approximated efficiently with a ratio of (1+ε)⋅(1+3–√) for some arbitrary ε>0. .}, author = {Schmid, Stefan and Svoboda, Jakub and Yeo, Michelle X}, booktitle = {SIROCCO 2023: Structural Information and Communication Complexity }, isbn = {9783031327322}, issn = {1611-3349}, location = {Alcala de Henares, Spain}, pages = {576--594}, publisher = {Springer Nature}, title = {{Weighted packet selection for rechargeable links in cryptocurrency networks: Complexity and approximation}}, doi = {10.1007/978-3-031-32733-9_26}, volume = {13892}, year = {2023}, } @phdthesis{14506, abstract = {Payment channel networks are a promising approach to improve the scalability bottleneck of cryptocurrencies. Two design principles behind payment channel networks are efficiency and privacy. Payment channel networks improve efficiency by allowing users to transact in a peer-to-peer fashion along multi-hop routes in the network, avoiding the lengthy process of consensus on the blockchain. Transacting over payment channel networks also improves privacy as these transactions are not broadcast to the blockchain. Despite the influx of recent protocols built on top of payment channel networks and their analysis, a common shortcoming of many of these protocols is that they typically focus only on either improving efficiency or privacy, but not both. Another limitation on the efficiency front is that the models used to model actions, costs and utilities of users are limited or come with unrealistic assumptions. This thesis aims to address some of the shortcomings of recent protocols and algorithms on payment channel networks, particularly in their privacy and efficiency aspects. We first present a payment route discovery protocol based on hub labelling and private information retrieval that hides the route query and is also efficient. We then present a rebalancing protocol that formulates the rebalancing problem as a linear program and solves the linear program using multiparty computation so as to hide the channel balances. The rebalancing solution as output by our protocol is also globally optimal. We go on to develop more realistic models of the action space, costs, and utilities of both existing and new users that want to join the network. In each of these settings, we also develop algorithms to optimise the utility of these users with good guarantees on the approximation and competitive ratios.}, author = {Yeo, Michelle X}, issn = {2663 - 337X}, pages = {162}, publisher = {Institute of Science and Technology Austria}, title = {{Advances in efficiency and privacy in payment channel network analysis}}, doi = {10.15479/14506}, year = {2023}, } @inproceedings{14490, abstract = {Payment channel networks (PCNs) are a promising solution to the scalability problem of cryptocurrencies. Any two users connected by a payment channel in the network can theoretically send an unbounded number of instant, costless transactions between them. Users who are not directly connected can also transact with each other in a multi-hop fashion. In this work, we study the incentive structure behind the creation of payment channel networks, particularly from the point of view of a single user that wants to join the network. We define a utility function for a new user in terms of expected revenue, expected fees, and the cost of creating channels, and then provide constant factor approximation algorithms that optimise the utility function given a certain budget. Additionally, we take a step back from a single user to the whole network and examine the parameter spaces under which simple graph topologies form a Nash equilibrium.}, author = {Avarikioti, Zeta and Lizurej, Tomasz and Michalak, Tomasz and Yeo, Michelle X}, booktitle = {43rd International Conference on Distributed Computing Systems}, isbn = {9798350339864}, issn = {2575-8411}, location = {Hong Kong, China}, pages = {603--613}, publisher = {IEEE}, title = {{Lightning creation games}}, doi = {10.1109/ICDCS57875.2023.00037}, volume = {2023}, year = {2023}, } @phdthesis{12726, abstract = {Most motions of many-body systems at any scale in nature with sufficient degrees of freedom tend to be chaotic; reaching from the orbital motion of planets, the air currents in our atmosphere, down to the water flowing through our pipelines or the movement of a population of bacteria. To the observer it is therefore intriguing when a moving collective exhibits order. Collective motion of flocks of birds, schools of fish or swarms of self-propelled particles or robots have been studied extensively over the past decades but the mechanisms involved in the transition from chaos to order remain unclear. Here, the interactions, that in most systems give rise to chaos, sustain order. In this thesis we investigate mechanisms that preserve, destabilize or lead to the ordered state. We show that endothelial cells migrating in circular confinements transition to a collective rotating state and concomitantly synchronize the frequencies of nucleating actin waves within individual cells. Consequently, the frequency dependent cell migration speed uniformizes across the population. Complementary to the WAVE dependent nucleation of traveling actin waves, we show that in leukocytes the actin polymerization depending on WASp generates pushing forces locally at stationary patches. Next, in pipe flows, we study methods to disrupt the self–sustaining cycle of turbulence and therefore relaminarize the flow. While we find in pulsating flow conditions that turbulence emerges through a helical instability during the decelerating phase. Finally, we show quantitatively in brain slices of mice that wild-type control neurons can compensate the migratory deficits of a genetically modified neuronal sub–population in the developing cortex.}, author = {Riedl, Michael}, issn = {2663-337X}, pages = {260}, publisher = {Institute of Science and Technology Austria}, title = {{Synchronization in collectively moving active matter}}, doi = {10.15479/at:ista:12726}, year = {2023}, } @phdthesis{14530, abstract = {Most motions of many-body systems at any scale in nature with sufficient degrees of freedom tend to be chaotic; reaching from the orbital motion of planets, the air currents in our atmosphere, down to the water flowing through our pipelines or the movement of a population of bacteria. To the observer it is therefore intriguing when a moving collective exhibits order. Collective motion of flocks of birds, schools of fish or swarms of self-propelled particles or robots have been studied extensively over the past decades but the mechanisms involved in the transition from chaos to order remain unclear. Here, the interactions, that in most systems give rise to chaos, sustain order. In this thesis we investigate mechanisms that preserve, destabilize or lead to the ordered state. We show that endothelial cells migrating in circular confinements transition to a collective rotating state and concomitantly synchronize the frequencies of nucleating actin waves within individual cells. Consequently, the frequency dependent cell migration speed uniformizes across the population. Complementary to the WAVE dependent nucleation of traveling actin waves, we show that in leukocytes the actin polymerization depending on WASp generates pushing forces locally at stationary patches. Next, in pipe flows, we study methods to disrupt the self--sustaining cycle of turbulence and therefore relaminarize the flow. While we find in pulsating flow conditions that turbulence emerges through a helical instability during the decelerating phase. Finally, we show quantitatively in brain slices of mice that wild-type control neurons can compensate the migratory deficits of a genetically modified neuronal sub--population in the developing cortex. }, author = {Riedl, Michael}, issn = {2663 - 337X}, keywords = {Synchronization, Collective Movement, Active Matter, Cell Migration, Active Colloids}, pages = {260}, publisher = {Institute of Science and Technology Austria}, title = {{Synchronization in collectively moving active matter}}, doi = {10.15479/14530}, year = {2023}, } @phdthesis{14547, abstract = {Superconductor-semiconductor heterostructures currently capture a significant amount of research interest and they serve as the physical platform in many proposals towards topological quantum computation. Despite being under extensive investigations, historically using transport techniques, the basic properties of the interface between the superconductor and the semiconductor remain to be understood. In this thesis, two separate studies on the Al-InAs heterostructures are reported with the first focusing on the physics of the material motivated by the emergence of a new phase, the Bogoliubov-Fermi surface. The second focuses on a technological application, a gate-tunable Josephson parametric amplifier. In the first study, we investigate the hypothesized unconventional nature of the induced superconductivity at the interface between the Al thin film and the InAs quantum well. We embed a two-dimensional Al-InAs hybrid system in a resonant microwave circuit allowing measurements of change in inductance. The behaviour of the resonance in a range of temperature and in-plane magnetic field has been studied and compared with the theory of conventional s-wave superconductor and a two-component theory that includes both contribution of the $s$-wave pairing in Al and the intraband $p \pm ip$ pairing in InAs. Measuring the temperature dependence of resonant frequency, no discrepancy is found between data and the conventional theory. We observe the breakdown of superconductivity due to an applied magnetic field which contradicts the conventional theory. In contrast, the data can be captured quantitatively by fitting to a two-component model. We find the evidence of the intraband $p \pm ip$ pairing in the InAs and the emergence of the Bogoliubov-Fermi surfaces due to magnetic field with the characteristic value $B^* = 0.33~\mathrm{T}$. From the fits, the sheet resistance of Al, the carrier density and mobility in InAs are determined. By systematically studying the anisotropy of the circuit response, we find weak anisotropy for $B < B^*$ and increasingly strong anisotropy for $B > B^*$ resulting in a pronounced two-lobe structure in polar plot of frequency versus field angle. Strong resemblance between the field dependence of dissipation and superfluid density hints at a hidden signature of the Bogoliubov-Fermi surface that is burried in the dissipation data. In the second study, we realize a parametric amplifier with a Josephson field effect transistor as the active element. The device's modest construction consists of a gated SNS weak link embedded at the center of a coplanar waveguide resonator. By applying a gate voltage, the resonant frequency is field-effect tunable over a range of 2 GHz. Modelling the JoFET minimally as a parallel RL circuit, the dissipation introduced by the JoFET can be quantitatively related to the gate voltage. We observed gate-tunable Kerr nonlinearity qualitatively in line with expectation. The JoFET amplifier has 20 dB of gain, 4 MHz of instantaneous bandwidth, and a 1dB compression point of -125.5 dBm when operated at a fixed resonant frequency. In general, the signal-to-noise ratio is improved by 5-7 dB when the JoFET amplifier is activated compared. The noise of the measurement chain and insertion loss of relevant circuit elements are calibrated to determine the expected and the real noise performance of the JoFET amplifier. As a quantification of the noise performance, the measured total input-referred noise of the JoFET amplifier is in good agreement with the estimated expectation which takes device loss into account. We found that the noise performance of the device reported in this document approaches one photon of total input-referred added noise which is the quantum limit imposed in nondegenerate parametric amplifier.}, author = {Phan, Duc T}, issn = {2663 - 337X}, keywords = {superconductor-semiconductor, superconductivity, Al, InAs, p-wave, superconductivity, JPA, microwave}, pages = {80}, publisher = {Institute of Science and Technology Austria}, title = {{Resonant microwave spectroscopy of Al-InAs}}, doi = {10.15479/14547}, year = {2023}, } @article{13264, abstract = {We build a parametric amplifier with a Josephson field-effect transistor (JoFET) as the active element. The resonant frequency of the device is field-effect tunable over a range of 2 GHz. The JoFET amplifier has 20 dB of gain, 4 MHz of instantaneous bandwidth, and a 1-dB compression point of -125.5 dBm when operated at a fixed resonance frequency. }, author = {Phan, Duc T and Falthansl-Scheinecker, Paul and Mishra, Umang and Strickland, W. M. and Langone, D. and Shabani, J. and Higginbotham, Andrew P}, issn = {2331-7019}, journal = {Physical Review Applied}, number = {6}, publisher = {American Physical Society}, title = {{Gate-tunable superconductor-semiconductor parametric amplifier}}, doi = {10.1103/PhysRevApplied.19.064032}, volume = {19}, year = {2023}, } @unpublished{14591, abstract = {Clathrin-mediated endocytosis (CME) is vital for the regulation of plant growth and development by controlling plasma membrane protein composition and cargo uptake. CME relies on the precise recruitment of regulators for vesicle maturation and release. Homologues of components of mammalian vesicle scission are strong candidates to be part of the scissin machinery in plants, but the precise roles of these proteins in this process is not fully understood. Here, we characterised the roles of Plant Dynamin-Related Proteins 2 (DRP2s) and SH3-domain containing protein 2 (SH3P2), the plant homologue to Dynamins’ recruiters, like Endophilin and Amphiphysin, in the CME by combining high-resolution imaging of endocytic events in vivo and characterisation of the purified proteins in vitro. Although DRP2s and SH3P2 arrive similarly late during CME and physically interact, genetic analysis of the Dsh3p1,2,3 triple-mutant and complementation assays with non-SH3P2-interacting DRP2 variants suggests that SH3P2 does not directly recruit DRP2s to the site of endocytosis. These observations imply that despite the presence of many well-conserved endocytic components, plants have acquired a distinct mechanism for CME. One Sentence Summary In contrast to predictions based on mammalian systems, plant Dynamin-related proteins 2 are recruited to the site of Clathrin-mediated endocytosis independently of BAR-SH3 proteins.}, author = {Gnyliukh, Nataliia and Johnson, Alexander J and Nagel, Marie-Kristin and Monzer, Aline and Hlavata, Annamaria and Isono, Erika and Loose, Martin and Friml, Jiří}, booktitle = {bioRxiv}, title = {{Role of dynamin-related proteins 2 and SH3P2 in clathrin-mediated endocytosis in plants}}, doi = {10.1101/2023.10.09.561523}, year = {2023}, } @article{14639, abstract = {Background: Biallelic variants in OGDHL, encoding part of the α-ketoglutarate dehydrogenase complex, have been associated with highly heterogeneous neurological and neurodevelopmental disorders. However, the validity of this association remains to be confirmed. A second OGDHL patient cohort was recruited to carefully assess the gene-disease relationship. Methods: Using an unbiased genotype-first approach, we screened large, multiethnic aggregated sequencing datasets worldwide for biallelic OGDHL variants. We used CRISPR/Cas9 to generate zebrafish knockouts of ogdhl, ogdh paralogs, and dhtkd1 to investigate functional relationships and impact during development. Functional complementation with patient variant transcripts was conducted to systematically assess protein functionality as a readout for pathogenicity. Results: A cohort of 14 individuals from 12 unrelated families exhibited highly variable clinical phenotypes, with the majority of them presenting at least one additional variant, potentially accounting for a blended phenotype and complicating phenotypic understanding. We also uncovered extreme clinical heterogeneity and high allele frequencies, occasionally incompatible with a fully penetrant recessive disorder. Human cDNA of previously described and new variants were tested in an ogdhl zebrafish knockout model, adding functional evidence for variant reclassification. We disclosed evidence of hypomorphic alleles as well as a loss-of-function variant without deleterious effects in zebrafish variant testing also showing discordant familial segregation, challenging the relationship of OGDHL as a conventional Mendelian gene. Going further, we uncovered evidence for a complex compensatory relationship among OGDH, OGDHL, and DHTKD1 isoenzymes that are associated with neurodevelopmental disorders and exhibit complex transcriptional compensation patterns with partial functional redundancy. Conclusions: Based on the results of genetic, clinical, and functional studies, we formed three hypotheses in which to frame observations: biallelic OGDHL variants lead to a highly variable monogenic disorder, variants in OGDHL are following a complex pattern of inheritance, or they may not be causative at all. Our study further highlights the continuing challenges of assessing the validity of reported disease-gene associations and effects of variants identified in these genes. This is particularly more complicated in making genetic diagnoses based on identification of variants in genes presenting a highly heterogenous phenotype such as “OGDHL-related disorders”.}, author = {Lin, Sheng-Jia and Vona, Barbara and Lau, Tracy and Huang, Kevin and Zaki, Maha S. and Aldeen, Huda Shujaa and Karimiani, Ehsan Ghayoor and Rocca, Clarissa and Noureldeen, Mahmoud M. and Saad, Ahmed K. and Petree, Cassidy and Bartolomaeus, Tobias and Abou Jamra, Rami and Zifarelli, Giovanni and Gotkhindikar, Aditi and Wentzensen, Ingrid M. and Liao, Mingjuan and Cork, Emalyn Elise and Varshney, Pratishtha and Hashemi, Narges and Mohammadi, Mohammad Hasan and Rad, Aboulfazl and Neira, Juanita and Toosi, Mehran Beiraghi and Knopp, Cordula and Kurth, Ingo and Challman, Thomas D. and Smith, Rebecca and Abdalla, Asmahan and Haaf, Thomas and Suri, Mohnish and Joshi, Manali and Chung, Wendy K. and Moreno-De-Luca, Andres and Houlden, Henry and Maroofian, Reza and Varshney, Gaurav K.}, issn = {1756-994X}, journal = {Genome Medicine}, keywords = {Genetics (clinical), Genetics, Molecular Biology, Molecular Medicine}, publisher = {Springer Nature}, title = {{Evaluating the association of biallelic OGDHL variants with significant phenotypic heterogeneity}}, doi = {10.1186/s13073-023-01258-4}, volume = {15}, year = {2023}, } @article{14628, abstract = {We introduce a compact, intuitive procedural graph representation for cellular metamaterials, which are small-scale, tileable structures that can be architected to exhibit many useful material properties. Because the structures’ “architectures” vary widely—with elements such as beams, thin shells, and solid bulks—it is difficult to explore them using existing representations. Generic approaches like voxel grids are versatile, but it is cumbersome to represent and edit individual structures; architecture-specific approaches address these issues, but are incompatible with one another. By contrast, our procedural graph succinctly represents the construction process for any structure using a simple skeleton annotated with spatially varying thickness. To express the highly constrained triply periodic minimal surfaces (TPMS) in this manner, we present the first fully automated version of the conjugate surface construction method, which allows novices to create complex TPMS from intuitive input. We demonstrate our representation’s expressiveness, accuracy, and compactness by constructing a wide range of established structures and hundreds of novel structures with diverse architectures and material properties. We also conduct a user study to verify our representation’s ease-of-use and ability to expand engineers’ capacity for exploration.}, author = {Makatura, Liane and Wang, Bohan and Chen, Yi-Lu and Deng, Bolei and Wojtan, Christopher J and Bickel, Bernd and Matusik, Wojciech}, issn = {0730-0301}, journal = {ACM Transactions on Graphics}, keywords = {Computer Graphics and Computer-Aided Design}, number = {5}, publisher = {Association for Computing Machinery}, title = {{Procedural metamaterials: A unified procedural graph for metamaterial design}}, doi = {10.1145/3605389}, volume = {42}, year = {2023}, } @unpublished{14644, abstract = {Transcription by RNA polymerase II (Pol II) can be repressed by noncoding RNA, including the human RNA Alu. However, the mechanism by which endogenous RNAs repress transcription remains unclear. Here we present cryo-electron microscopy structures of Pol II bound to Alu RNA, which reveal that Alu RNA mimics how DNA and RNA bind to Pol II during transcription elongation. Further, we show how domains of the general transcription factor TFIIF affect complex dynamics and control repressive activity. Together, we reveal how a non-coding RNA can regulate mammalian gene expression.}, author = {Tluckova, Katarina and Testa Salmazo, Anita P and Bernecky, Carrie A}, publisher = {Institute of Science and Technology Austria}, title = {{Mechanism of mammalian transcriptional repression by noncoding RNA}}, doi = {10.15479/AT:ISTA:14644}, year = {2023}, } @article{14658, abstract = {We investigate spin-charge separation of a spin- 1 2 Fermi system confined in a triple well where multiple bands are occupied. We assume that our finite fermionic system is close to fully spin polarized while being doped by a hole and an impurity fermion with opposite spin. Our setup involves ferromagnetic couplings among the particles in different bands, leading to the development of strong spin-transport correlations in an intermediate interaction regime. Interactions are then strong enough to lift the degeneracy among singlet and triplet spin configurations in the well of the spin impurity but not strong enough to prohibit hole-induced magnetic excitations to the singlet state. Despite the strong spin-hole correlations, the system exhibits spin-charge deconfinement allowing for long-range entanglement of the spatial and spin degrees of freedom.}, author = {Becker, J. M. and Koutentakis, Georgios and Schmelcher, P.}, issn = {2643-1564}, journal = {Physical Review Research}, number = {4}, publisher = {American Physical Society}, title = {{Spin-charge correlations in finite one-dimensional multiband Fermi systems}}, doi = {10.1103/PhysRevResearch.5.043039}, volume = {5}, year = {2023}, } @article{14650, abstract = {We study the out-of-equilibrium quantum dynamics of dipolar polarons, i.e., impurities immersed in a dipolar Bose-Einstein condensate, after a quench of the impurity-boson interaction. We show that the dipolar nature of the condensate and of the impurity results in anisotropic relaxation dynamics, in particular, anisotropic dressing of the polaron. More relevantly for cold-atom setups, quench dynamics is strongly affected by the interplay between dipolar anisotropy and trap geometry. Our findings pave the way for simulating impurities in anisotropic media utilizing experiments with dipolar mixtures.}, author = {Volosniev, Artem and Bighin, Giacomo and Santos, Luis and Peña Ardila, Luisllu A.}, issn = {2542-4653}, journal = {SciPost Physics}, keywords = {General Physics and Astronomy}, number = {6}, publisher = {SciPost Foundation}, title = {{Non-equilibrium dynamics of dipolar polarons}}, doi = {10.21468/scipostphys.15.6.232}, volume = {15}, year = {2023}, }