TY - JOUR
AB - The fundamental tasks of the root system are, besides anchoring, mediating interactions between plant and soil and providing the plant with water and nutrients. The architecture of the root system is controlled by endogenous mechanisms that constantly integrate environmental signals, such as availability of nutrients and water. Extremely important for efficient soil exploitation and survival under less favorable conditions is the developmental flexibility of the root system that is largely determined by its postembryonic branching capacity. Modulation of initiation and outgrowth of lateral roots provides roots with an exceptional plasticity, allows optimal adjustment to underground heterogeneity, and enables effective soil exploitation and use of resources. Here we discuss recent advances in understanding the molecular mechanisms that shape the plant root system and integrate external cues to adapt to the changing environment.
AU - Ötvös, Krisztina
AU - Benková, Eva
ID - 1004
JF - Current Opinion in Genetics & Development
SN - 0959437X
TI - Spatiotemporal mechanisms of root branching
VL - 45
ER -
TY - JOUR
AB - A nonlinear system possesses an invariance with respect to a set of transformations if its output dynamics remain invariant when transforming the input, and adjusting the initial condition accordingly. Most research has focused on invariances with respect to time-independent pointwise transformations like translational-invariance (u(t) -> u(t) + p, p in R) or scale-invariance (u(t) -> pu(t), p in R>0). In this article, we introduce the concept of s0-invariances with respect to continuous input transformations exponentially growing/decaying over time. We show that s0-invariant systems not only encompass linear time-invariant (LTI) systems with transfer functions having an irreducible zero at s0 in R, but also that the input/output relationship of nonlinear s0-invariant systems possesses properties well known from their linear counterparts. Furthermore, we extend the concept of s0-invariances to second- and higher-order s0-invariances, corresponding to invariances with respect to transformations of the time-derivatives of the input, and encompassing LTI systems with zeros of multiplicity two or higher. Finally, we show that nth-order 0-invariant systems realize – under mild conditions – nth-order nonlinear differential operators: when excited by an input of a characteristic functional form, the system’s output converges to a constant value only depending on the nth (nonlinear) derivative of the input.
AU - Lang, Moritz
AU - Sontag, Eduardo
ID - 1007
JF - Automatica
SN - 00051098
TI - Zeros of nonlinear systems with input invariances
VL - 81C
ER -
TY - CONF
AB - A standard objective in partially-observable Markov decision processes (POMDPs) is to find a policy that maximizes the expected discounted-sum payoff. However, such policies may still permit unlikely but highly undesirable outcomes, which is problematic especially in safety-critical applications. Recently, there has been a surge of interest in POMDPs where the goal is to maximize the probability to ensure that the payoff is at least a given threshold, but these approaches do not consider any optimization beyond satisfying this threshold constraint. In this work we go beyond both the “expectation” and “threshold” approaches and consider a “guaranteed payoff optimization (GPO)” problem for POMDPs, where we are given a threshold t and the objective is to find a policy σ such that a) each possible outcome of σ yields a discounted-sum payoff of at least t, and b) the expected discounted-sum payoff of σ is optimal (or near-optimal) among all policies satisfying a). We present a practical approach to tackle the GPO problem and evaluate it on standard POMDP benchmarks.
AU - Chatterjee, Krishnendu
AU - Novotny, Petr
AU - Pérez, Guillermo
AU - Raskin, Jean
AU - Zikelic, Djordje
ID - 1009
T2 - Proceedings of the 31st AAAI Conference on Artificial Intelligence
TI - Optimizing expectation with guarantees in POMDPs
VL - 5
ER -
TY - JOUR
AB - We prove a local law in the bulk of the spectrum for random Gram matrices XX∗, a generalization of sample covariance matrices, where X is a large matrix with independent, centered entries with arbitrary variances. The limiting eigenvalue density that generalizes the Marchenko-Pastur law is determined by solving a system of nonlinear equations. Our entrywise and averaged local laws are on the optimal scale with the optimal error bounds. They hold both in the square case (hard edge) and in the properly rectangular case (soft edge). In the latter case we also establish a macroscopic gap away from zero in the spectrum of XX∗.
AU - Alt, Johannes
AU - Erdös, László
AU - Krüger, Torben H
ID - 1010
JF - Electronic Journal of Probability
SN - 10836489
TI - Local law for random Gram matrices
VL - 22
ER -
TY - CONF
AB - Pushdown systems (PDSs) and recursive state machines (RSMs), which are linearly equivalent, are standard models for interprocedural analysis. Yet RSMs are more convenient as they (a) explicitly model function calls and returns, and (b) specify many natural parameters for algorithmic analysis, e.g., the number of entries and exits. We consider a general framework where RSM transitions are labeled from a semiring and path properties are algebraic with semiring operations, which can model, e.g., interprocedural reachability and dataflow analysis problems. Our main contributions are new algorithms for several fundamental problems. As compared to a direct translation of RSMs to PDSs and the best-known existing bounds of PDSs, our analysis algorithm improves the complexity for finite-height semirings (that subsumes reachability and standard dataflow properties). We further consider the problem of extracting distance values from the representation structures computed by our algorithm, and give efficient algorithms that distinguish the complexity of a one-time preprocessing from the complexity of each individual query. Another advantage of our algorithm is that our improvements carry over to the concurrent setting, where we improve the bestknown complexity for the context-bounded analysis of concurrent RSMs. Finally, we provide a prototype implementation that gives a significant speed-up on several benchmarks from the SLAM/SDV project.
AU - Chatterjee, Krishnendu
AU - Kragl, Bernhard
AU - Mishra, Samarth
AU - Pavlogiannis, Andreas
ED - Yang, Hongseok
ID - 1011
SN - 03029743
TI - Faster algorithms for weighted recursive state machines
VL - 10201
ER -
TY - JOUR
AU - Vahid Belarghou, Afshin
AU - Šarić, Anđela
AU - Idema, Timon
ID - 10126
IS - 3
JF - Biophysical Journal
KW - biophysics
SN - 0006-3495
TI - Curvature mediated interactions in highly curved membranes
VL - 112
ER -
TY - JOUR
AB - We consider the large-scale regularity of solutions to second-order linear elliptic equations with random coefficient fields. In contrast to previous works on regularity theory for random elliptic operators, our interest is in the regularity at the boundary: We consider problems posed on the half-space with homogeneous Dirichlet boundary conditions and derive an associated C1,α-type large-scale regularity theory in the form of a corresponding decay estimate for the homogenization-adapted tilt-excess. This regularity theory entails an associated Liouville-type theorem. The results are based on the existence of homogenization correctors adapted to the half-space setting, which we construct-by an entirely deterministic argument-as a modification of the homogenization corrector on the whole space. This adaption procedure is carried out inductively on larger scales, crucially relying on the regularity theory already established on smaller scales.
AU - Fischer, Julian L
AU - Raithel, Claudia
ID - 1014
IS - 1
JF - SIAM Journal on Mathematical Analysis
SN - 00361410
TI - Liouville principles and a large-scale regularity theory for random elliptic operators on the half-space
VL - 49
ER -
TY - JOUR
AB - Vortices are commonly observed in the context of classical hydrodynamics: from whirlpools after stirring the coffee in a cup to a violent atmospheric phenomenon such as a tornado, all classical vortices are characterized by an arbitrary circulation value of the local velocity field. On the other hand the appearance of vortices with quantized circulation represents one of the fundamental signatures of macroscopic quantum phenomena. In two-dimensional superfluids quantized vortices play a key role in determining finite-temperature properties, as the superfluid phase and the normal state are separated by a vortex unbinding transition, the Berezinskii-Kosterlitz-Thouless transition. Very recent experiments with two-dimensional superfluid fermions motivate the present work: we present theoretical results based on the renormalization group showing that the universal jump of the superfluid density and the critical temperature crucially depend on the interaction strength, providing a strong benchmark for forthcoming investigations.
AU - Bighin, Giacomo
AU - Salasnich, Luca
ID - 1015
JF - Scientific Reports
SN - 20452322
TI - Vortices and antivortices in two-dimensional ultracold Fermi gases
VL - 7
ER -
TY - JOUR
AB - The integrity and dynamic properties of the microtubule cytoskeleton are indispensable for the development of the mammalian brain. Consequently, mutations in the genes that encode the structural component (the α/β-tubulin heterodimer) can give rise to severe, sporadic neurodevelopmental disorders. These are commonly referred to as the tubulinopathies. Here we report the addition of recessive quadrupedalism, also known as Uner Tan syndrome (UTS), to the growing list of diseases caused by tubulin variants. Analysis of a consanguineous UTS family identified a biallelic TUBB2B mutation, resulting in a p.R390Q amino acid substitution. In addition to the identifying quadrupedal locomotion, all three patients showed severe cerebellar hypoplasia. None, however, displayed the basal ganglia malformations typically associated with TUBB2B mutations. Functional analysis of the R390Q substitution revealed that it did not affect the ability of β-tubulin to fold or become assembled into the α/β-heterodimer, nor did it influence the incorporation of mutant-containing heterodimers into microtubule polymers. The 390Q mutation in S. cerevisiae TUB2 did not affect growth under basal conditions, but did result in increased sensitivity to microtubule-depolymerizing drugs, indicative of a mild impact of this mutation on microtubule function. The TUBB2B mutation described here represents an unusual recessive mode of inheritance for missense-mediated tubulinopathies and reinforces the sensitivity of the developing cerebellum to microtubule defects.
AU - Breuss, Martin
AU - Nguyen, Thai
AU - Srivatsan, Anjana
AU - Leca, Ines
AU - Tian, Guoling
AU - Fritz, Tanja
AU - Hansen, Andi H
AU - Musaev, Damir
AU - Mcevoy Venneri, Jennifer
AU - Kiely, James
AU - Rosti, Rasim
AU - Scott, Eric
AU - Tan, Uner
AU - Kolodner, Richard
AU - Cowan, Nicholas
AU - Keays, David
AU - Gleeson, Joseph
ID - 1016
IS - 2
JF - Human Molecular Genetics
SN - 09646906
TI - Uner Tan syndrome caused by a homozygous TUBB2B mutation affecting microtubule stability
VL - 26
ER -
TY - JOUR
AB - The development of the vertebrate central nervous system is reliant on a complex cascade of biological processes that include mitotic division, relocation of migrating neurons, and the extension of dendritic and axonal processes. Each of these cellular events requires the diverse functional repertoire of the microtubule cytoskeleton for the generation of forces, assembly of macromolecular complexes and transport of molecules and organelles. The tubulins are a multi-gene family that encode for the constituents of microtubules, and have been implicated in a spectrum of neurological disorders. Evidence is building that different tubulins tune the functional properties of the microtubule cytoskeleton dependent on the cell type, developmental profile and subcellular localisation. Here we review of the origins of the functional specification of the tubulin gene family in the developing brain at a transcriptional, translational, and post-transcriptional level. We remind the reader that tubulins are not just loading controls for your average Western blot.
AU - Breuss, Martin
AU - Leca, Ines
AU - Gstrein, Thomas
AU - Hansen, Andi H
AU - Keays, David
ID - 1017
JF - Molecular and Cellular Neuroscience
SN - 10447431
TI - Tubulins and brain development: The origins of functional specification
VL - 84
ER -
TY - JOUR
AB - We study periodic homogenization by Γ-convergence of integral functionals with integrands W(x,ξ) having no polynomial growth and which are both not necessarily continuous with respect to the space variable and not necessarily convex with respect to the matrix variable. This allows to deal with homogenization of composite hyperelastic materials consisting of two or more periodic components whose the energy densities tend to infinity as the volume of matter tends to zero, i.e., W(x,ξ)=∑j∈J1Vj(x)Hj(ξ) where {Vj}j∈J is a finite family of open disjoint subsets of RN, with |∂Vj|=0 for all j∈J and ∣∣RN∖⋃j∈JVj|=0, and, for each j∈J, Hj(ξ)→∞ as detξ→0. In fact, our results apply to integrands of type W(x,ξ)=a(x)H(ξ) when H(ξ)→∞ as detξ→0 and a∈L∞(RN;[0,∞[) is 1-periodic and is either continuous almost everywhere or not continuous. When a is not continuous, we obtain a density homogenization formula which is a priori different from the classical one by Braides–Müller. Although applications to hyperelasticity are limited due to the fact that our framework is not consistent with the constraint of noninterpenetration of the matter, our results can be of technical interest to analysis of homogenization of integral functionals.
AU - Anza Hafsa, Omar
AU - Clozeau, Nicolas
AU - Mandallena, Jean-Philippe
ID - 10175
IS - 2
JF - Annales mathématiques Blaise Pascal
SN - 1259-1734
TI - Homogenization of nonconvex unbounded singular integrals
VL - 24
ER -
TY - JOUR
AB - In plants, the multistep phosphorelay (MSP) pathway mediates a range of regulatory processes, including those activated by cytokinins. The crosstalk between cytokinin response and light is known for a long time. However, the molecular mechanism underlying the interactionbetween light and cytokinin signaling remains elusive. In the screen for upstream regulators we identified a LONG PALE HYPOCOTYL (LPH) gene whose activity is indispensable for spatiotemporally correct expression of CYTOKININ INDEPENDENT-1 (CKI1), encoding the constitutively active sensor histidine kinase that activates MSP signaling. lph is a new allele of HEME OXYGENASE 1 (HY1) which encodes the key protein in the biosynthesis of phytochromobilin, a cofactor of photoconvertiblephytochromes. Our analysis confirmed the light-dependent regulation oftheCKI1 expression pattern. We show that CKI1 expression is under the control of phytochrome A (phyA), functioning as a dual (both positive and negative) regulator of CKI1 expression, presumably via the phyA-regulated transcription factors PHYTOCHROME INTERACTING FACTOR 3 (PIF3) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1). Changes in CKI1 expression observed in lph/hy1-7 and phy mutants correlatewithmisregulation of MSP signaling, changedcytokinin sensitivity and developmental aberrations,previously shown to be associated with cytokinin and/or CKI1 action. Besides that, we demonstrate novel role of phyA-dependent CKI1 expression in the hypocotyl elongation and hook development during skotomorphogenesis. Based on these results, we propose that the light-dependent regulation of CKI1 provides a plausible mechanistic link underlying the well-known interaction between light- and cytokinin-controlled plant development.
AU - Dobisova, Tereza
AU - Hrdinova, Vendula
AU - Cuesta, Candela
AU - Michlickova, Sarka
AU - Urbankova, Ivana
AU - Hejatkova, Romana
AU - Zadnikova, Petra
AU - Pernisová, Markéta
AU - Benková, Eva
AU - Hejátko, Jan
ID - 1018
IS - 1
JF - Plant Physiology
TI - Light regulated expression of sensor histidine kinase CKI1 controls cytokinin related development
VL - 174
ER -
TY - JOUR
AB - Cellulose is the most abundant biopolymer on Earth. Cellulose fibers, such as the one extracted form cotton or woodpulp, have been used by humankind for hundreds of years to make textiles and paper. Here we show how, by engineering light-matter interaction, we can optimize light scattering using exclusively cellulose nanocrystals. The produced material is sustainable, biocompatible, and when compared to ordinary microfiber-based paper, it shows enhanced scattering strength (×4), yielding a transport mean free path as low as 3.5 μm in the visible light range. The experimental results are in a good agreement with the theoretical predictions obtained with a diffusive model for light propagation.
AU - Caixeiro, Soraya
AU - Peruzzo, Matilda
AU - Onelli, Olimpia
AU - Vignolini, Silvia
AU - Sapienza, Riccardo
ID - 1020
IS - 9
JF - ACS Applied Materials and Interfaces
SN - 19448244
TI - Disordered cellulose based nanostructures for enhanced light scattering
VL - 9
ER -
TY - JOUR
AB - Most flows in nature and engineering are turbulent because of their large velocities and spatial scales. Laboratory experiments on rotating quasi-Keplerian flows, for which the angular velocity decreases radially but the angular momentum increases, are however laminar at Reynolds numbers exceeding one million. This is in apparent contradiction to direct numerical simulations showing that in these experiments turbulence transition is triggered by the axial boundaries. We here show numerically that as the Reynolds number increases, turbulence becomes progressively confined to the boundary layers and the flow in the bulk fully relaminarizes. Our findings support that turbulence is unlikely to occur in isothermal constant-density quasi-Keplerian flows.
AU - Lopez Alonso, Jose M
AU - Avila, Marc
ID - 1021
JF - Journal of Fluid Mechanics
SN - 00221120
TI - Boundary layer turbulence in experiments on quasi Keplerian flows
VL - 817
ER -
TY - JOUR
AB - We introduce a multiscale topological description of the Megaparsec web-like cosmic matter distribution. Betti numbers and topological persistence offer a powerful means of describing the rich connectivity structure of the cosmic web and of its multiscale arrangement of matter and galaxies. Emanating from algebraic topology and Morse theory, Betti numbers and persistence diagrams represent an extension and deepening of the cosmologically familiar topological genus measure and the related geometric Minkowski functionals. In addition to a description of the mathematical background, this study presents the computational procedure for computing Betti numbers and persistence diagrams for density field filtrations. The field may be computed starting from a discrete spatial distribution of galaxies or simulation particles. The main emphasis of this study concerns an extensive and systematic exploration of the imprint of different web-like morphologies and different levels of multiscale clustering in the corresponding computed Betti numbers and persistence diagrams. To this end, we use Voronoi clustering models as templates for a rich variety of web-like configurations and the fractal-like Soneira-Peebles models exemplify a range of multiscale configurations. We have identified the clear imprint of cluster nodes, filaments, walls, and voids in persistence diagrams, along with that of the nested hierarchy of structures in multiscale point distributions. We conclude by outlining the potential of persistent topology for understanding the connectivity structure of the cosmic web, in large simulations of cosmic structure formation and in the challenging context of the observed galaxy distribution in large galaxy surveys.
AU - Pranav, Pratyush
AU - Edelsbrunner, Herbert
AU - Van De Weygaert, Rien
AU - Vegter, Gert
AU - Kerber, Michael
AU - Jones, Bernard
AU - Wintraecken, Mathijs
ID - 1022
IS - 4
JF - Monthly Notices of the Royal Astronomical Society
SN - 00358711
TI - The topology of the cosmic web in terms of persistent Betti numbers
VL - 465
ER -
TY - JOUR
AB - We consider products of independent square non-Hermitian random matrices. More precisely, let X1,…, Xn be independent N × N random matrices with independent entries (real or complex with independent real and imaginary parts) with zero mean and variance 1/N. Soshnikov-O’Rourke [19] and Götze-Tikhomirov [15] showed that the empirical spectral distribution of the product of n random matrices with iid entries converges to (equation found). We prove that if the entries of the matrices X1,…, Xn are independent (but not necessarily identically distributed) and satisfy uniform subexponential decay condition, then in the bulk the convergence of the ESD of X1,…, Xn to (0.1) holds up to the scale N–1/2+ε.
AU - Nemish, Yuriy
ID - 1023
JF - Electronic Journal of Probability
SN - 10836489
TI - Local law for the product of independent non-Hermitian random matrices with independent entries
VL - 22
ER -
TY - JOUR
AB - Many organ surfaces are covered by a protective epithelial-cell layer. It emerges that such layers are maintained by cell stretching that triggers cell division mediated by the force-sensitive ion-channel protein Piezo1. See Letter p.118
AU - Heisenberg, Carl-Philipp J
ID - 1025
IS - 7643
JF - Nature
SN - 00280836
TI - Cell biology: Stretched divisions
VL - 543
ER -
TY - JOUR
AB - We investigate effects of quasiparticle poisoning in a Majorana island with strong tunnel coupling to normal-metal leads. In addition to the main Coulomb blockade diamonds, "shadow" diamonds appear, shifted by 1e in gate voltage, consistent with transport through an excited (poisoned) state of the island. Comparison to a simple model yields an estimate of parity lifetime for the strongly coupled island (∼1 μs) and sets a bound for a weakly coupled island (>10 μs). Fluctuations in the gate-voltage spacing of Coulomb peaks at high field, reflecting Majorana hybridization, are enhanced by the reduced lever arm at strong coupling. When converted from gate voltage to energy units, fluctuations are consistent with previous measurements.
AU - Albrecht, S M
AU - Hansen, Esben
AU - Higginbotham, Andrew P
AU - Kuemmeth, Ferdinand
AU - Jespersen, Thomas
AU - Nygård, Jesper
AU - Krogstrup, Peter
AU - Danon, Jeroen
AU - Flensberg, Karsten
AU - Marcus, Charles
ID - 103
IS - 13
JF - APS Physics, Physical Review Letters
TI - Transport signatures of quasiparticle poisoning in a majorana island
VL - 118
ER -
TY - JOUR
AB - Auf der Suche nach einem Bibliothekssystem entschied sich die Forschungseinrichtung IST Austria im Jahr 2014 für das Open-Source-Produkt Koha. In einem ersten Schritt wurden zunächst Grundfunktionen aktiviert um im Anschluss diverse zusätzliche Tools zum Einsatz zu bringen. Die große Flexibilität des Systems erlaubt maßgeschneiderte Lösungen für unterschiedlichste Institutionen. Trotz Herausforderungen kann die Bibliothek auf eine erfolgreiche Implementierung zurückblicken.
AU - Villányi, Márton
ID - 1030
IS - 1
JF - Informationspraxis
SN - 2297-3249
TI - Ein freies Bibliothekssystem für wissenschaftliche Bibliotheken – Werkstattbericht der IST Austria Library
VL - 3
ER -
TY - JOUR
AB - Biological membranes have a central role in mediating the organization of membrane-curving proteins, a dynamic process that has proven to be challenging to probe experimentally. Using atomic force microscopy, we capture the hierarchically organized assemblies of Bin/amphiphysin/Rvs (BAR) proteins on supported lipid membranes. Their structure reveals distinct long linear aggregates of proteins, regularly spaced by up to 300 nm. Employing accurate free-energy calculations from large-scale coarse-grained computer simulations, we found that the membrane mediates the interaction among protein filaments as a combination of short- and long-ranged interactions. The long-ranged component acts at strikingly long distances, giving rise to a variety of micron-sized ordered patterns. This mechanism may contribute to the long-ranged spatiotemporal control of membrane remodeling by proteins in the cell.
AU - Simunovic, Mijo
AU - Šarić, Anđela
AU - Henderson, J. Michael
AU - Lee, Ka Yee C.
AU - Voth, Gregory A.
ID - 10369
IS - 12
JF - ACS Central Science
KW - general chemical engineering
KW - general chemistry
SN - 2374-7943
TI - Long-range organization of membrane-curving proteins
VL - 3
ER -
TY - JOUR
AB - Eukaryotic cells are densely packed with macromolecular complexes and intertwining organelles, continually transported and reshaped. Intriguingly, organelles avoid clashing and entangling with each other in such limited space. Mitochondria form extensive networks constantly remodeled by fission and fusion. Here, we show that mitochondrial fission is triggered by mechanical forces. Mechano-stimulation of mitochondria – via encounter with motile intracellular pathogens, via external pressure applied by an atomic force microscope, or via cell migration across uneven microsurfaces – results in the recruitment of the mitochondrial fission machinery, and subsequent division. We propose that MFF, owing to affinity for narrow mitochondria, acts as a membrane-bound force sensor to recruit the fission machinery to mechanically strained sites. Thus, mitochondria adapt to the environment by sensing and responding to biomechanical cues. Our findings that mechanical triggers can be coupled to biochemical responses in membrane dynamics may explain how organelles orderly cohabit in the crowded cytoplasm.
AU - Helle, Sebastian Carsten Johannes
AU - Feng, Qian
AU - Aebersold, Mathias J
AU - Hirt, Luca
AU - Grüter, Raphael R
AU - Vahid, Afshin
AU - Sirianni, Andrea
AU - Mostowy, Serge
AU - Snedeker, Jess G
AU - Šarić, Anđela
AU - Idema, Timon
AU - Zambelli, Tomaso
AU - Kornmann, Benoît
ID - 10370
JF - eLife
KW - general immunology and microbiology
KW - general biochemistry
KW - genetics and molecular biology
KW - general medicine
KW - general neuroscience
SN - 2050-084X
TI - Mechanical force induces mitochondrial fission
VL - 6
ER -
TY - JOUR
AB - Electric charges are conserved. The same would be expected to hold for magnetic charges, yet magnetic monopoles have never been observed. It is therefore surprising that the laws of nonequilibrium thermodynamics, combined with Maxwell’s equations, suggest that colloidal particles heated or cooled in certain polar or paramagnetic solvents may behave as if they carry an electric/magnetic charge. Here, we present numerical simulations that show that the field distribution around a pair of such heated/cooled colloidal particles agrees quantitatively with the theoretical predictions for a pair of oppositely charged electric or magnetic monopoles. However, in other respects, the nonequilibrium colloidal particles do not behave as monopoles: They cannot be moved by a homogeneous applied field. The numerical evidence for the monopole-like fields around heated/cooled colloidal particles is crucial because the experimental and numerical determination of forces between such colloidal particles would be complicated by the presence of other effects, such as thermophoresis.
AU - Wirnsberger, Peter
AU - Fijan, Domagoj
AU - Lightwood, Roger A.
AU - Šarić, Anđela
AU - Dellago, Christoph
AU - Frenkel, Daan
ID - 10373
IS - 19
JF - Proceedings of the National Academy of Sciences
KW - multidisciplinary
SN - 0027-8424
TI - Numerical evidence for thermally induced monopoles
VL - 114
ER -
TY - JOUR
AB - The formation of filaments from naturally occurring protein molecules is a process at the core of a range of functional and aberrant biological phenomena, such as the assembly of the cytoskeleton or the appearance of aggregates in Alzheimer's disease. The macroscopic behaviour associated with such processes is remarkably diverse, ranging from simple nucleated growth to highly cooperative processes with a well-defined lagtime. Thus, conventionally, different molecular mechanisms have been used to explain the self-assembly of different proteins. Here we show that this range of behaviour can be quantitatively captured by a single unifying Petri net that describes filamentous growth in terms of aggregate number and aggregate mass concentrations. By considering general features associated with a particular network connectivity, we are able to establish directly the rate-determining steps of the overall aggregation reaction from the system's scaling behaviour. We illustrate the power of this framework on a range of different experimental and simulated aggregating systems. The approach is general and will be applicable to any future extensions of the reaction network of filamentous self-assembly.
AU - Meisl, Georg
AU - Rajah, Luke
AU - Cohen, Samuel A. I.
AU - Pfammatter, Manuela
AU - Šarić, Anđela
AU - Hellstrand, Erik
AU - Buell, Alexander K.
AU - Aguzzi, Adriano
AU - Linse, Sara
AU - Vendruscolo, Michele
AU - Dobson, Christopher M.
AU - Knowles, Tuomas P. J.
ID - 10374
IS - 10
JF - Chemical Science
KW - general chemistry
SN - 2041-6520
TI - Scaling behaviour and rate-determining steps in filamentous self-assembly
VL - 8
ER -
TY - JOUR
AB - Cellular membranes exhibit a large variety of shapes, strongly coupled to their function. Many biological processes involve dynamic reshaping of membranes, usually mediated by proteins. This interaction works both ways: while proteins influence the membrane shape, the membrane shape affects the interactions between the proteins. To study these membrane-mediated interactions on closed and anisotropically curved membranes, we use colloids adhered to ellipsoidal membrane vesicles as a model system. We find that two particles on a closed system always attract each other, and tend to align with the direction of largest curvature. Multiple particles form arcs, or, at large enough numbers, a complete ring surrounding the vesicle in its equatorial plane. The resulting vesicle shape resembles a snowman. Our results indicate that these physical interactions on membranes with anisotropic shapes can be exploited by cells to drive macromolecules to preferred regions of cellular or intracellular membranes, and utilized to initiate dynamic processes such as cell division. The same principle could be used to find the midplane of an artificial vesicle, as a first step towards dividing it into two equal parts.
AU - Vahid, Afshin
AU - Šarić, Anđela
AU - Idema, Timon
ID - 10375
IS - 28
JF - Soft Matter
KW - condensed matter physics
KW - general chemistry
SN - 1744-683X
TI - Curvature variation controls particle aggregation on fluid vesicles
VL - 13
ER -
TY - JOUR
AB - A fundamental algorithmic problem at the heart of static analysis is Dyck reachability. The input is a graph where the edges are labeled with different types of opening and closing parentheses, and the reachability information is computed via paths whose parentheses are properly matched. We present new results for Dyck reachability problems with applications to alias analysis and data-dependence analysis. Our main contributions, that include improved upper bounds as well as lower bounds that establish optimality guarantees, are as follows: First, we consider Dyck reachability on bidirected graphs, which is the standard way of performing field-sensitive points-to analysis. Given a bidirected graph with n nodes and m edges, we present: (i) an algorithm with worst-case running time O(m + n · α(n)), where α(n) is the inverse Ackermann function, improving the previously known O(n2) time bound; (ii) a matching lower bound that shows that our algorithm is optimal wrt to worst-case complexity; and (iii) an optimal average-case upper bound of O(m) time, improving the previously known O(m · logn) bound. Second, we consider the problem of context-sensitive data-dependence analysis, where the task is to obtain analysis summaries of library code in the presence of callbacks. Our algorithm preprocesses libraries in almost linear time, after which the contribution of the library in the complexity of the client analysis is only linear, and only wrt the number of call sites. Third, we prove that combinatorial algorithms for Dyck reachability on general graphs with truly sub-cubic bounds cannot be obtained without obtaining sub-cubic combinatorial algorithms for Boolean Matrix Multiplication, which is a long-standing open problem. Thus we establish that the existing combinatorial algorithms for Dyck reachability are (conditionally) optimal for general graphs. We also show that the same hardness holds for graphs of constant treewidth. Finally, we provide a prototype implementation of our algorithms for both alias analysis and data-dependence analysis. Our experimental evaluation demonstrates that the new algorithms significantly outperform all existing methods on the two problems, over real-world benchmarks.
AU - Chatterjee, Krishnendu
AU - Choudhary, Bhavya
AU - Pavlogiannis, Andreas
ID - 10416
IS - POPL
JF - Proceedings of the ACM on Programming Languages
TI - Optimal Dyck reachability for data-dependence and Alias analysis
VL - 2
ER -
TY - JOUR
AB - We present a new dynamic partial-order reduction method for stateless model checking of concurrent programs. A common approach for exploring program behaviors relies on enumerating the traces of the program, without storing the visited states (aka stateless exploration). As the number of distinct traces grows exponentially, dynamic partial-order reduction (DPOR) techniques have been successfully used to partition the space of traces into equivalence classes (Mazurkiewicz partitioning), with the goal of exploring only few representative traces from each class.
We introduce a new equivalence on traces under sequential consistency semantics, which we call the observation equivalence. Two traces are observationally equivalent if every read event observes the same write event in both traces. While the traditional Mazurkiewicz equivalence is control-centric, our new definition is data-centric. We show that our observation equivalence is coarser than the Mazurkiewicz equivalence, and in many cases even exponentially coarser. We devise a DPOR exploration of the trace space, called data-centric DPOR, based on the observation equivalence.
AU - Chalupa, Marek
AU - Chatterjee, Krishnendu
AU - Pavlogiannis, Andreas
AU - Sinha, Nishant
AU - Vaidya, Kapil
ID - 10417
IS - POPL
JF - Proceedings of the ACM on Programming Languages
TI - Data-centric dynamic partial order reduction
VL - 2
ER -
TY - JOUR
AB - We present a new proof rule for proving almost-sure termination of probabilistic programs, including those that contain demonic non-determinism. An important question for a probabilistic program is whether the probability mass of all its diverging runs is zero, that is that it terminates "almost surely". Proving that can be hard, and this paper presents a new method for doing so. It applies directly to the program's source code, even if the program contains demonic choice. Like others, we use variant functions (a.k.a. "super-martingales") that are real-valued and decrease randomly on each loop iteration; but our key innovation is that the amount as well as the probability of the decrease are parametric. We prove the soundness of the new rule, indicate where its applicability goes beyond existing rules, and explain its connection to classical results on denumerable (non-demonic) Markov chains.
AU - Mciver, Annabelle
AU - Morgan, Carroll
AU - Kaminski, Benjamin Lucien
AU - Katoen, Joost P
ID - 10418
IS - POPL
JF - Proceedings of the ACM on Programming Languages
TI - A new proof rule for almost-sure termination
VL - 2
ER -
TY - JOUR
AB - The Ising model is one of the simplest and most famous models of interacting systems. It was originally proposed to model ferromagnetic interactions in statistical physics and is now widely used to model spatial processes in many areas such as ecology, sociology, and genetics, usually without testing its goodness-of-fit. Here, we propose an exact goodness-of-fit test for the finite-lattice Ising model. The theory of Markov bases has been developed in algebraic statistics for exact goodness-of-fit testing using a Monte Carlo approach. However, this beautiful theory has fallen short of its promise for applications, because finding a Markov basis is usually computationally intractable. We develop a Monte Carlo method for exact goodness-of-fit testing for the Ising model which avoids computing a Markov basis and also leads to a better connectivity of the Markov chain and hence to a faster convergence. We show how this method can be applied to analyze the spatial organization of receptors on the cell membrane.
AU - Martin Del Campo Sanchez, Abraham
AU - Cepeda Humerez, Sarah A
AU - Uhler, Caroline
ID - 2016
IS - 2
JF - Scandinavian Journal of Statistics
SN - 03036898
TI - Exact goodness-of-fit testing for the Ising model
VL - 44
ER -
TY - JOUR
AB - We establish the dimension and irreducibility of the moduli space of rational curves (of fixed degree) on arbitrary smooth hypersurfaces of sufficiently low degree. A spreading out argument reduces the problem to hypersurfaces defined over finite fields of large cardinality, which can then be tackled using a function field version of the Hardy-Littlewood circle method, in which particular care is taken to ensure uniformity in the size of the underlying finite field.
AU - Timothy Browning
AU - Vishe, Pankaj
ID - 265
IS - 7
JF - Geometric Methods in Algebra and Number Theory
TI - Rational curves on smooth hypersurfaces of low degree
VL - 11
ER -
TY - JOUR
AB - We generalise Birch's seminal work on forms in many variables to handle a system of forms in which the degrees need not all be the same. This allows us to prove the Hasse principle, weak approximation, and the Manin-Peyre conjecture for a smooth and geometrically integral variety X Pm, provided only that its dimension is large enough in terms of its degree.
AU - Timothy Browning
AU - Heath-Brown, Roger
ID - 266
IS - 2
JF - Journal of the European Mathematical Society
TI - Forms in many variables and differing degrees
VL - 19
ER -
TY - JOUR
AB - Building on recent work of Bhargava, Elkies and Schnidman and of Kriz and Li, we produce infinitely many smooth cubic surfaces defined over the field of rational numbers that contain rational points.
AU - Timothy Browning
ID - 267
IS - 3
JF - Mathematika
TI - Many cubic surfaces contain rational points
VL - 63
ER -
TY - JOUR
AB - We show that any subset of the squares of positive relative upper density contains nontrivial solutions to a translation-invariant linear equation in five or more variables, with explicit quantitative bounds. As a consequence, we establish the partition regularity of any diagonal quadric in five or more variables whose coefficients sum to zero. Unlike previous approaches, which are limited to equations in seven or more variables, we employ transference technology of Green to import bounds from the linear setting.
AU - Timothy Browning
AU - Prendiville, Sean M
ID - 268
IS - 7
JF - International Mathematics Research Notices
TI - A transference approach to a Roth-type theorem in the squares
VL - 2017
ER -
TY - JOUR
AU - Browning, Timothy D
AU - Loughran, Daniel
ID - 269
IS - 3-4
JF - Mathematische Zeitschrift
TI - Varieties with too many rational points
VL - 285
ER -
TY - JOUR
AB - Given a symmetric variety Y defined over Q and a non-zero polynomial with integer coefficients, we use techniques from homogeneous dynamics to establish conditions under which the polynomial can be made r-free for a Zariski dense set of integral points on Y . We also establish an asymptotic counting formula for this set. In the special case that Y is a quadric hypersurface, we give explicit bounds on the size of r by combining the argument with a uniform upper bound for the density of integral points on general affine quadrics defined over Q.
AU - Timothy Browning
AU - Gorodnik, Alexander
ID - 270
IS - 6
JF - Proceedings of the London Mathematical Society
TI - Power-free values of polynomials on symmetric varieties
VL - 114
ER -
TY - JOUR
AB - We show that a non-singular integral form of degree d is soluble non-trivially over the integers if and only if it is soluble non-trivially over the reals and the p-adic numbers, provided that the form has at least (d-\sqrt{d}/2)2^d variables. This improves on a longstanding result of Birch.
AU - Timothy Browning
AU - Prendiville, Sean M
ID - 271
IS - 731
JF - Journal fur die Reine und Angewandte Mathematik
TI - Improvements in Birch's theorem on forms in many variables
VL - 2017
ER -
TY - JOUR
AB - Given a number field K/Q and a polynomial P ε Q [t], all of whose roots are Q, let X be the variety defined by the equation NK (x) = P (t). Combining additive combinatiorics with descent we show that the Brauer-Manin obstruction is the only obstruction to the Hesse principle and weak approximation on any smooth and projective model of X.
AU - Timothy Browning
AU - Matthiesen, Lilian
ID - 272
IS - 6
JF - Annales Scientifiques de l'Ecole Normale Superieure
TI - Norm forms for arbitrary number fields as products of linear polynomials
VL - 50
ER -
TY - CONF
AB - We consider the problem of estimating the partition function Z(β)=∑xexp(−β(H(x)) of a Gibbs distribution with a Hamilton H(⋅), or more precisely the logarithm of the ratio q=lnZ(0)/Z(β). It has been recently shown how to approximate q with high probability assuming the existence of an oracle that produces samples from the Gibbs distribution for a given parameter value in [0,β]. The current best known approach due to Huber [9] uses O(qlnn⋅[lnq+lnlnn+ε−2]) oracle calls on average where ε is the desired accuracy of approximation and H(⋅) is assumed to lie in {0}∪[1,n]. We improve the complexity to O(qlnn⋅ε−2) oracle calls. We also show that the same complexity can be achieved if exact oracles are replaced with approximate sampling oracles that are within O(ε2qlnn) variation distance from exact oracles. Finally, we prove a lower bound of Ω(q⋅ε−2) oracle calls under a natural model of computation.
AU - Kolmogorov, Vladimir
ID - 274
T2 - Proceedings of the 31st Conference On Learning Theory
TI - A faster approximation algorithm for the Gibbs partition function
VL - 75
ER -
TY - JOUR
AB - An electro-optomechanical device capable of microwave-to-optics conversion has recently been demonstrated, with the vision of enabling optical networks of superconducting qubits. Here we present an improved converter design that uses a three-dimensional microwave cavity for coupling between the microwave transmission line and an integrated LC resonator on the converter chip. The new design simplifies the optical assembly and decouples it from the microwave part of the setup. Experimental demonstrations show that the modular device assembly allows us to flexibly tune the microwave coupling to the converter chip while maintaining small loss. We also find that electromechanical experiments are not impacted by the additional microwave cavity. Our design is compatible with a high-finesse optical cavity and will improve optical performance.
AU - Menke, Tim
AU - Burns, Peter
AU - Higginbotham, Andrew P
AU - Kampel, N S
AU - Peterson, Robert
AU - Cicak, Katarina
AU - Simmonds, Raymond
AU - Regal, Cindy
AU - Lehnert, Konrad
ID - 93
IS - 9
JF - Review of Scientific Instruments
TI - Reconfigurable re-entrant cavity for wireless coupling to an electro-optomechanical device
VL - 88
ER -
TY - JOUR
AB - During puberty, the mouse mammary gland develops into a highly branched epithelial network. Owing to the absence of exclusive stem cell markers, the location, multiplicity, dynamics and fate of mammary stem cells (MaSCs), which drive branching morphogenesis, are unknown. Here we show that morphogenesis is driven by proliferative terminal end buds that terminate or bifurcate with near equal probability, in a stochastic and time-invariant manner, leading to a heterogeneous epithelial network. We show that the majority of terminal end bud cells function as highly proliferative, lineage-committed MaSCs that are heterogeneous in their expression profile and short-term contribution to ductal extension. Yet, through cell rearrangements during terminal end bud bifurcation, each MaSC is able to contribute actively to long-term growth. Our study shows that the behaviour of MaSCs is not directly linked to a single expression profile. Instead, morphogenesis relies upon lineage-restricted heterogeneous MaSC populations that function as single equipotent pools in the long term.
AU - Scheele, Colinda
AU - Hannezo, Edouard B
AU - Muraro, Mauro
AU - Zomer, Anoek
AU - Langedijk, Nathalia
AU - Van Oudenaarden, Alexander
AU - Simons, Benjamin
AU - Van Rheenen, Jacco
ID - 934
IS - 7641
JF - Nature
SN - 00280836
TI - Identity and dynamics of mammary stem cells during branching morphogenesis
VL - 542
ER -
TY - JOUR
AB - Homeostatic replacement of epithelial cells from basal precursors is a multistep process involving progenitor cell specification, radial intercalation and, finally, apical surface emergence. Recent data demonstrate that actin-based pushing under the control of the formin protein Fmn1 drives apical emergence in nascent multiciliated epithelial cells (MCCs), but little else is known about this actin network or the control of Fmn1. Here, we explore the role of the small GTPase RhoA in MCC apical emergence. Disruption of RhoA function reduced the rate of apical surface expansion and decreased the final size of the apical domain. Analysis of cell shapes suggests that RhoA alters the balance of forces exerted on the MCC apical surface. Finally, quantitative time-lapse imaging and fluorescence recovery after photobleaching studies argue that RhoA works in concert with Fmn1 to control assembly of the specialized apical actin network in MCCs. These data provide new molecular insights into epithelial apical surface assembly and could also shed light on mechanisms of apical lumen formation
AU - Sedzinski, Jakub
AU - Hannezo, Edouard B
AU - Tu, Fan
AU - Biro, Maté
AU - Wallingford, John
ID - 936
IS - 5
JF - Journal of Cell Science
TI - RhoA regulates actin network dynamics during apical surface emergence in multiciliated epithelial cells
VL - 130
ER -
TY - JOUR
AB - During epithelial cytokinesis, the remodelling of adhesive cell-cell contacts between the dividing cell and its neighbours has profound implications for the integrity, arrangement and morphogenesis of proliferative tissues. In both vertebrates and invertebrates, this remodelling requires the activity of non-muscle myosin II (MyoII) in the interphasic cells neighbouring the dividing cell. However, the mechanisms that coordinate cytokinesis and MyoII activity in the neighbours are unknown. Here we show that in the Drosophila notum epithelium, each cell division is associated with a mechanosensing and transmission event that controls MyoII dynamics in neighbouring cells. We find that the ring pulling forces promote local junction elongation, which results in local E-cadherin dilution at the ingressing adherens junction. In turn, the reduction in E-cadherin concentration and the contractility of the neighbouring cells promote self-organized actomyosin flows, ultimately leading to accumulation of MyoII at the base of the ingressing junction. Although force transduction has been extensively studied in the context of adherens junction reinforcement to stabilize adhesive cell-cell contacts, we propose an alternative mechanosensing mechanism that coordinates actomyosin dynamics between epithelial cells and sustains the remodelling of the adherens junction in response to mechanical forces.
AU - Pinheiro, Diana
AU - Hannezo, Edouard B
AU - Herszterg, Sophie
AU - Bosveld, Floris
AU - Gaugué, Isabelle
AU - Balakireva, Maria
AU - Wang, Zhimin
AU - Cristo, Inês
AU - Rigaud, Stéphane
AU - Markova, Olga
AU - Bellaïche, Yohanns
ID - 937
IS - 7652
JF - Nature
SN - 00280836
TI - Transmission of cytokinesis forces via E cadherin dilution and actomyosin flows
VL - 545
ER -
TY - THES
AB - The thesis encompasses several topics of plant cell biology which were studied in the model plant Arabidopsis thaliana. Chapter 1 concerns the plant hormone auxin and its polar transport through cells and tissues. The highly controlled, directional transport of auxin is facilitated by plasma membrane-localized transporters. Transporters from the PIN family direct auxin transport due to their polarized localizations at cell membranes. Substantial effort has been put into research on cellular trafficking of PIN proteins, which is thought to underlie their polar distribution. I participated in a forward genetic screen aimed at identifying novel regulators of PIN polarity. The screen yielded several genes which may be involved in PIN polarity regulation or participate in polar auxin transport by other means. Chapter 2 focuses on the endomembrane system, with particular attention to clathrin-mediated endocytosis. The project started with identification of several proteins that interact with clathrin light chains. Among them, I focused on two putative homologues of auxilin, which in non-plant systems is an endocytotic factor known for uncoating clathrin-coated vesicles in the final step of endocytosis. The body of my work consisted of an in-depth characterization of transgenic A. thaliana lines overexpressing these putative auxilins in an inducible manner. Overexpression of these proteins leads to an inhibition of endocytosis, as documented by imaging of cargoes and clathrin-related endocytic machinery. An extension of this work is an investigation into a concept of homeostatic regulation acting between distinct transport processes in the endomembrane system. With auxilin overexpressing lines, where endocytosis is blocked specifically, I made observations on the mutual relationship between two opposite trafficking processes of secretion and endocytosis. In Chapter 3, I analyze cortical microtubule arrays and their relationship to auxin signaling and polarized growth in elongating cells. In plants, microtubules are organized into arrays just below the plasma membrane, and it is thought that their function is to guide membrane-docked cellulose synthase complexes. These, in turn, influence cell wall structure and cell shape by directed deposition of cellulose fibres. In elongating cells, cortical microtubule arrays are able to reorient in relation to long cell axis, and these reorientations have been linked to cell growth and to signaling of growth-regulating factors such as auxin or light. In this chapter, I am addressing the causal relationship between microtubule array reorientation, growth, and auxin signaling. I arrive at a model where array reorientation is not guided by auxin directly, but instead is only controlled by growth, which, in turn, is regulated by auxin.
AU - Adamowski, Maciek
ID - 938
TI - Investigations into cell polarity and trafficking in the plant model Arabidopsis thaliana
ER -
TY - JOUR
AB - We reveal the existence of continuous families of guided single-mode solitons in planar waveguides with weakly nonlinear active core and absorbing boundaries. Stable propagation of TE and TM-polarized solitons is accompanied by attenuation of all other modes, i.e., the waveguide features properties of conservative and dissipative systems. If the linear spectrum of the waveguide possesses exceptional points, which occurs in the case of TM polarization, an originally focusing (defocusing) material nonlinearity may become effectively defocusing (focusing). This occurs due to the geometric phase of the carried eigenmode when the surface impedance encircles the exceptional point. In its turn, the change of the effective nonlinearity ensures the existence of dark (bright) solitons in spite of focusing (defocusing) Kerr nonlinearity of the core. The existence of an exceptional point can also result in anomalous enhancement of the effective nonlinearity. In terms of practical applications, the nonlinearity of the reported waveguide can be manipulated by controlling the properties of the absorbing cladding.
AU - Midya, Bikashkali
AU - Konotop, Vladimir
ID - 939
IS - 3
JF - Physical Review Letters
SN - 00319007
TI - Waveguides with absorbing boundaries: Nonlinearity controlled by an exceptional point and solitons
VL - 119
ER -
TY - JOUR
AB - We introduce a method for breaking Lorentz reciprocity based upon the noncommutation of frequency conversion and delay. The method requires no magnetic materials or resonant physics, allowing for the design of scalable and broadband nonreciprocal circuits. With this approach, two types of gyrators - universal building blocks for linear, nonreciprocal circuits - are constructed. Using one of these gyrators, we create a circulator with >15 dB of isolation across the 5-9 GHz band. Our designs may be readily extended to any platform with suitable frequency conversion elements, including semiconducting devices for telecommunication or an on-chip superconducting implementation for quantum information processing.
AU - Rosenthal, Eric
AU - Chapman, Benjamin
AU - Higginbotham, Andrew P
AU - Kerckhoff, Joseph
AU - Lehnert, Konrad
ID - 94
IS - 14
JF - APS Physics, Physical Review Letters
TI - Breaking Lorentz reciprocity with frequency conversion and delay
VL - 119
ER -
TY - CONF
AB - Recently there has been a proliferation of automated program repair (APR) techniques, targeting various programming languages. Such techniques can be generally classified into two families: syntactic- and semantics-based. Semantics-based APR, on which we focus, typically uses symbolic execution to infer semantic constraints and then program synthesis to construct repairs conforming to them. While syntactic-based APR techniques have been shown successful on bugs in real-world programs written in both C and Java, semantics-based APR techniques mostly target C programs. This leaves empirical comparisons of the APR families not fully explored, and developers without a Java-based semantics APR technique. We present JFix, a semantics-based APR framework that targets Java, and an associated Eclipse plugin. JFix is implemented atop Symbolic PathFinder, a well-known symbolic execution engine for Java programs. It extends one particular APR technique (Angelix), and is designed to be sufficiently generic to support a variety of such techniques. We demonstrate that semantics-based APR can indeed efficiently and effectively repair a variety of classes of bugs in large real-world Java programs. This supports our claim that the framework can both support developers seeking semantics-based repair of bugs in Java programs, as well as enable larger scale empirical studies comparing syntactic- and semantics-based APR targeting Java. The demonstration of our tool is available via the project website at: https://xuanbachle.github.io/semanticsrepair/
AU - Le, Xuan
AU - Chu, Duc Hiep
AU - Lo, David
AU - Le Goues, Claire
AU - Visser, Willem
ID - 941
T2 - Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis
TI - JFIX: Semantics-based repair of Java programs via symbolic PathFinder
ER -
TY - CONF
AB - A notable class of techniques for automatic program repair is known as semantics-based. Such techniques, e.g., Angelix, infer semantic specifications via symbolic execution, and then use program synthesis to construct new code that satisfies those inferred specifications. However, the obtained specifications are naturally incomplete, leaving the synthesis engine with a difficult task of synthesizing a general solution from a sparse space of many possible solutions that are consistent with the provided specifications but that do not necessarily generalize. We present S3, a new repair synthesis engine that leverages programming-by-examples methodology to synthesize high-quality bug repairs. The novelty in S3 that allows it to tackle the sparse search space to create more general repairs is three-fold: (1) A systematic way to customize and constrain the syntactic search space via a domain-specific language, (2) An efficient enumeration-based search strategy over the constrained search space, and (3) A number of ranking features based on measures of the syntactic and semantic distances between candidate solutions and the original buggy program. We compare S3’s repair effectiveness with state-of-the-art synthesis engines Angelix, Enumerative, and CVC4. S3 can successfully and correctly fix at least three times more bugs than the best baseline on datasets of 52 bugs in small programs, and 100 bugs in real-world large programs.
AU - Le, Xuan
AU - Chu, Duc Hiep
AU - Lo, David
AU - Le Goues, Claire
AU - Visser, Willem
ID - 942
SN - 978-145035105-8
TI - S3: Syntax- and semantic-guided repair synthesis via programming by examples
VL - F130154
ER -
TY - JOUR
AB - Like many developing tissues, the vertebrate neural tube is patterned by antiparallel morphogen gradients. To understand how these inputs are interpreted, we measured morphogen signaling and target gene expression in mouse embryos and chick ex vivo assays. From these data, we derived and validated a characteristic decoding map that relates morphogen input to the positional identity of neural progenitors. Analysis of the observed responses indicates that the underlying interpretation strategy minimizes patterning errors in response to the joint input of noisy opposing gradients. We reverse-engineered a transcriptional network that provides a mechanistic basis for the observed cell fate decisions and accounts for the precision and dynamics of pattern formation. Together, our data link opposing gradient dynamics in a growing tissue to precise pattern formation.
AU - Zagórski, Marcin P
AU - Tabata, Yoji
AU - Brandenberg, Nathalie
AU - Lutolf, Matthias
AU - Tkacik, Gasper
AU - Bollenbach, Tobias
AU - Briscoe, James
AU - Kicheva, Anna
ID - 943
IS - 6345
JF - Science
SN - 00368075
TI - Decoding of position in the developing neural tube from antiparallel morphogen gradients
VL - 356
ER -
TY - JOUR
AB - The concerted production of neurons and glia by neural stem cells (NSCs) is essential for neural circuit assembly. In the developing cerebral cortex, radial glia progenitors (RGPs) generate nearly all neocortical neurons and certain glia lineages. RGP proliferation behavior shows a high degree of non-stochasticity, thus a deterministic characteristic of neuron and glia production. However, the cellular and molecular mechanisms controlling RGP behavior and proliferation dynamics in neurogenesis and glia generation remain unknown. By using mosaic analysis with double markers (MADM)-based genetic paradigms enabling the sparse and global knockout with unprecedented single-cell resolution, we identified Lgl1 as a critical regulatory component. We uncover Lgl1-dependent tissue-wide community effects required for embryonic cortical neurogenesis and novel cell-autonomous Lgl1 functions controlling RGP-mediated glia genesis and postnatal NSC behavior. These results suggest that NSC-mediated neuron and glia production is tightly regulated through the concerted interplay of sequential Lgl1-dependent global and cell intrinsic mechanisms.
AU - Beattie, Robert J
AU - Postiglione, Maria P
AU - Burnett, Laura
AU - Laukoter, Susanne
AU - Streicher, Carmen
AU - Pauler, Florian
AU - Xiao, Guanxi
AU - Klezovitch, Olga
AU - Vasioukhin, Valeri
AU - Ghashghaei, Troy
AU - Hippenmeyer, Simon
ID - 944
IS - 3
JF - Neuron
SN - 08966273
TI - Mosaic analysis with double markers reveals distinct sequential functions of Lgl1 in neural stem cells
VL - 94
ER -
TY - JOUR
AB - Cytosine methylation regulates essential genome functions across eukaryotes, but the fundamental question of whether nucleosomal or naked DNA is the preferred substrate of plant and animal methyltransferases remains unresolved. Here, we show that genetic inactivation of a single DDM1/Lsh family nucleosome remodeler biases methylation toward inter-nucleosomal linker DNA in Arabidopsis thaliana and mouse. We find that DDM1 enables methylation of DNA bound to the nucleosome, suggesting that nucleosome-free DNA is the preferred substrate of eukaryotic methyltransferases in vivo. Furthermore, we show that simultaneous mutation of DDM1 and linker histone H1 in Arabidopsis reproduces the strong linker-specific methylation patterns of species that diverged from flowering plants and animals over a billion years ago. Our results indicate that in the absence of remodeling, nucleosomes are strong barriers to DNA methyltransferases. Linker-specific methylation can evolve simply by breaking the connection between nucleosome remodeling and DNA methylation.
AU - Lyons, David B
AU - Zilberman, Daniel
ID - 9445
JF - eLife
TI - DDM1 and Lsh remodelers allow methylation of DNA wrapped in nucleosomes
VL - 6
ER -
TY - JOUR
AB - While chromosome-wide dosage compensation of the X chromosome has been found in many species, studies in ZW clades have indicated that compensation of the Z is more localized and/or incomplete. In the ZW Lepidoptera, some species show complete compensation of the Z chromosome, while others lack full equalization, but what drives these inconsistencies is unclear. Here, we compare patterns of male and female gene expression on the Z chromosome of two closely related butterfly species, Papilio xuthus and Papilio machaon, and in multiple tissues of two moths species, Plodia interpunctella and Bombyx mori, which were previously found to differ in the extent to which they equalize Z-linked gene expression between the sexes. We find that, while some species and tissues seem to have incomplete dosage compensation, this is in fact due to the accumulation of male-biased genes and the depletion of female-biased genes on the Z chromosome. Once this is accounted for, the Z chromosome is fully compensated in all four species, through the up-regulation of Z expression in females and in some cases additional down-regulation in males. We further find that both sex-biased genes and Z-linked genes have increased rates of expression divergence in this clade, and that this can lead to fast shifts in patterns of gene expression even between closely related species. Taken together, these results show that the uneven distribution of sex-biased genes on sex chromosomes can confound conclusions about dosage compensation and that Z chromosome-wide dosage compensation is not only possible but ubiquitous among Lepidoptera.
AU - Huylmans, Ann K
AU - Macon, Ariana
AU - Vicoso, Beatriz
ID - 945
IS - 10
JF - Molecular Biology and Evolution
SN - 07374038
TI - Global dosage compensation is ubiquitous in Lepidoptera, but counteracted by the masculinization of the Z chromosome
VL - 34
ER -
TY - JOUR
AB - Roots navigate through soil integrating environmental signals to orient their growth. The Arabidopsis root is a widely used model for developmental, physiological and cell biological studies. Live imaging greatly aids these efforts, but the horizontal sample position and continuous root tip displacement present significant difficulties. Here, we develop a confocal microscope setup for vertical sample mounting and integrated directional illumination. We present TipTracker – a custom software for automatic tracking of diverse moving objects usable on various microscope setups. Combined, this enables observation of root tips growing along the natural gravity vector over prolonged periods of time, as well as the ability to induce rapid gravity or light stimulation. We also track migrating cells in the developing zebrafish embryo, demonstrating the utility of this system in the acquisition of high-resolution data sets of dynamic samples. We provide detailed descriptions of the tools enabling the easy implementation on other microscopes.
AU - Von Wangenheim, Daniel
AU - Hauschild, Robert
AU - Fendrych, Matyas
AU - Barone, Vanessa
AU - Benková, Eva
AU - Friml, Jirí
ID - 946
JF - eLife
TI - Live tracking of moving samples in confocal microscopy for vertically grown roots
VL - 6
ER -
TY - JOUR
AB - Viewing the ways a living cell can organize its metabolism as the phase space of a physical system, regulation can be seen as the ability to reduce the entropy of that space by selecting specific cellular configurations that are, in some sense, optimal. Here we quantify the amount of regulation required to control a cell's growth rate by a maximum-entropy approach to the space of underlying metabolic phenotypes, where a configuration corresponds to a metabolic flux pattern as described by genome-scale models. We link the mean growth rate achieved by a population of cells to the minimal amount of metabolic regulation needed to achieve it through a phase diagram that highlights how growth suppression can be as costly (in regulatory terms) as growth enhancement. Moreover, we provide an interpretation of the inverse temperature β controlling maximum-entropy distributions based on the underlying growth dynamics. Specifically, we show that the asymptotic value of β for a cell population can be expected to depend on (i) the carrying capacity of the environment, (ii) the initial size of the colony, and (iii) the probability distribution from which the inoculum was sampled. Results obtained for E. coli and human cells are found to be remarkably consistent with empirical evidence.
AU - De Martino, Daniele
AU - Capuani, Fabrizio
AU - De Martino, Andrea
ID - 947
IS - 1
JF - Physical Review E Statistical Nonlinear and Soft Matter Physics
SN - 24700045
TI - Quantifying the entropic cost of cellular growth control
VL - 96
ER -
TY - CONF
AB - Two-player games on graphs are widely studied in formal methods as they model the interaction between a system and its environment. The game is played by moving a token throughout a graph to produce an infinite path. There are several common modes to determine how the players move the token through the graph; e.g., in turn-based games the players alternate turns in moving the token. We study the bidding mode of moving the token, which, to the best of our knowledge, has never been studied in infinite-duration games. Both players have separate budgets, which sum up to $1$. In each turn, a bidding takes place. Both players submit bids simultaneously, and a bid is legal if it does not exceed the available budget. The winner of the bidding pays his bid to the other player and moves the token. For reachability objectives, repeated bidding games have been studied and are called Richman games. There, a central question is the existence and computation of threshold budgets; namely, a value t\in [0,1] such that if\PO's budget exceeds $t$, he can win the game, and if\PT's budget exceeds 1-t, he can win the game. We focus on parity games and mean-payoff games. We show the existence of threshold budgets in these games, and reduce the problem of finding them to Richman games. We also determine the strategy-complexity of an optimal strategy. Our most interesting result shows that memoryless strategies suffice for mean-payoff bidding games.
AU - Avni, Guy
AU - Henzinger, Thomas A
AU - Chonev, Ventsislav K
ID - 950
SN - 1868-8969
TI - Infinite-duration bidding games
VL - 85
ER -
TY - JOUR
AB - Methylation in the bodies of active genes is common in animals and vascular plants. Evolutionary patterns indicate homeostatic functions for this type of methylation.
AU - Zilberman, Daniel
ID - 9506
IS - 1
JF - Genome Biology
SN - 1474-760X
TI - An evolutionary case for functional gene body methylation in plants and animals
VL - 18
ER -
TY - JOUR
AB - Dengue-suppressing Wolbachia strains are promising tools for arbovirus control, particularly as they have the potential to self-spread following local introductions. To test this, we followed the frequency of the transinfected Wolbachia strain wMel through Ae. aegypti in Cairns, Australia, following releases at 3 nonisolated locations within the city in early 2013. Spatial spread was analysed graphically using interpolation and by fitting a statistical model describing the position and width of the wave. For the larger 2 of the 3 releases (covering 0.97 km2 and 0.52 km2), we observed slow but steady spatial spread, at about 100–200 m per year, roughly consistent with theoretical predictions. In contrast, the smallest release (0.11 km2) produced erratic temporal and spatial dynamics, with little evidence of spread after 2 years. This is consistent with the prediction concerning fitness-decreasing Wolbachia transinfections that a minimum release area is needed to achieve stable local establishment and spread in continuous habitats. Our graphical and likelihood analyses produced broadly consistent estimates of wave speed and wave width. Spread at all sites was spatially heterogeneous, suggesting that environmental heterogeneity will affect large-scale Wolbachia transformations of urban mosquito populations. The persistence and spread of Wolbachia in release areas meeting minimum area requirements indicates the promise of successful large-scale population transfo
AU - Schmidt, Tom
AU - Barton, Nicholas H
AU - Rasic, Gordana
AU - Turley, Andrew
AU - Montgomery, Brian
AU - Iturbe Ormaetxe, Inaki
AU - Cook, Peter
AU - Ryan, Peter
AU - Ritchie, Scott
AU - Hoffmann, Ary
AU - O’Neill, Scott
AU - Turelli, Michael
ID - 951
IS - 5
JF - PLoS Biology
SN - 15449173
TI - Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes Aegypti
VL - 15
ER -
TY - JOUR
AB - A novel strategy for controlling the spread of arboviral diseases such as dengue, Zika and chikungunya is to transform mosquito populations with virus-suppressing Wolbachia. In general, Wolbachia transinfected into mosquitoes induce fitness costs through lower viability or fecundity. These maternally inherited bacteria also produce a frequency-dependent advantage for infected females by inducing cytoplasmic incompatibility (CI), which kills the embryos produced by uninfected females mated to infected males. These competing effects, a frequency-dependent advantage and frequency-independent costs, produce bistable Wolbachia frequency dynamics. Above a threshold frequency, denoted pˆ, CI drives fitness-decreasing Wolbachia transinfections through local populations; but below pˆ, infection frequencies tend to decline to zero. If pˆ is not too high, CI also drives spatial spread once infections become established over sufficiently large areas. We illustrate how simple models provide testable predictions concerning the spatial and temporal dynamics of Wolbachia introductions, focusing on rate of spatial spread, the shape of spreading waves, and the conditions for initiating spread from local introductions. First, we consider the robustness of diffusion-based predictions to incorporating two important features of wMel-Aedes aegypti biology that may be inconsistent with the diffusion approximations, namely fast local dynamics induced by complete CI (i.e., all embryos produced from incompatible crosses die) and long-tailed, non-Gaussian dispersal. With complete CI, our numerical analyses show that long-tailed dispersal changes wave-width predictions only slightly; but it can significantly reduce wave speed relative to the diffusion prediction; it also allows smaller local introductions to initiate spatial spread. Second, we use approximations for pˆ and dispersal distances to predict the outcome of 2013 releases of wMel-infected Aedes aegypti in Cairns, Australia, Third, we describe new data from Ae. aegypti populations near Cairns, Australia that demonstrate long-distance dispersal and provide an approximate lower bound on pˆ for wMel in northeastern Australia. Finally, we apply our analyses to produce operational guidelines for efficient transformation of vector populations over large areas. We demonstrate that even very slow spatial spread, on the order of 10-20 m/month (as predicted), can produce area-wide population transformation within a few years following initial releases covering about 20-30% of the target area.
AU - Turelli, Michael
AU - Barton, Nicholas H
ID - 952
JF - Theoretical Population Biology
SN - 00405809
TI - Deploying dengue-suppressing Wolbachia: Robust models predict slow but effective spatial spread in Aedes aegypti
VL - 115
ER -
TY - JOUR
AB - The role of natural selection in the evolution of adaptive phenotypes has undergone constant probing by evolutionary biologists, employing both theoretical and empirical approaches. As Darwin noted, natural selection can act together with other processes, including random changes in the frequencies of phenotypic differences that are not under strong selection, and changes in the environment, which may reflect evolutionary changes in the organisms themselves. As understanding of genetics developed after 1900, the new genetic discoveries were incorporated into evolutionary biology. The resulting general principles were summarized by Julian Huxley in his 1942 book Evolution: the modern synthesis. Here, we examine how recent advances in genetics, developmental biology and molecular biology, including epigenetics, relate to today's understanding of the evolution of adaptations. We illustrate how careful genetic studies have repeatedly shown that apparently puzzling results in a wide diversity of organisms involve processes that are consistent with neo-Darwinism. They do not support important roles in adaptation for processes such as directed mutation or the inheritance of acquired characters, and therefore no radical revision of our understanding of the mechanism of adaptive evolution is needed.
AU - Charlesworth, Deborah
AU - Barton, Nicholas H
AU - Charlesworth, Brian
ID - 953
IS - 1855
JF - Proceedings of the Royal Society of London Series B Biological Sciences
TI - The sources of adaptive evolution
VL - 284
ER -
TY - JOUR
AB - Understanding the relation between genotype and phenotype remains a major challenge. The difficulty of predicting individual mutation effects, and particularly the interactions between them, has prevented the development of a comprehensive theory that links genotypic changes to their phenotypic effects. We show that a general thermodynamic framework for gene regulation, based on a biophysical understanding of protein-DNA binding, accurately predicts the sign of epistasis in a canonical cis-regulatory element consisting of overlapping RNA polymerase and repressor binding sites. Sign and magnitude of individual mutation effects are sufficient to predict the sign of epistasis and its environmental dependence. Thus, the thermodynamic model offers the correct null prediction for epistasis between mutations across DNA-binding sites. Our results indicate that a predictive theory for the effects of cis-regulatory mutations is possible from first principles, as long as the essential molecular mechanisms and the constraints these impose on a biological system are accounted for.
AU - Lagator, Mato
AU - Paixao, Tiago
AU - Barton, Nicholas H
AU - Bollback, Jonathan P
AU - Guet, Calin C
ID - 954
JF - eLife
SN - 2050084X
TI - On the mechanistic nature of epistasis in a canonical cis-regulatory element
VL - 6
ER -
TY - JOUR
AB - Gene expression is controlled by networks of regulatory proteins that interact specifically with external signals and DNA regulatory sequences. These interactions force the network components to co-evolve so as to continually maintain function. Yet, existing models of evolution mostly focus on isolated genetic elements. In contrast, we study the essential process by which regulatory networks grow: the duplication and subsequent specialization of network components. We synthesize a biophysical model of molecular interactions with the evolutionary framework to find the conditions and pathways by which new regulatory functions emerge. We show that specialization of new network components is usually slow, but can be drastically accelerated in the presence of regulatory crosstalk and mutations that promote promiscuous interactions between network components.
AU - Friedlander, Tamar
AU - Prizak, Roshan
AU - Barton, Nicholas H
AU - Tkacik, Gasper
ID - 955
IS - 1
JF - Nature Communications
SN - 20411723
TI - Evolution of new regulatory functions on biophysically realistic fitness landscapes
VL - 8
ER -
TY - JOUR
AB - We study a class of ergodic quantum Markov semigroups on finite-dimensional unital C⁎-algebras. These semigroups have a unique stationary state σ, and we are concerned with those that satisfy a quantum detailed balance condition with respect to σ. We show that the evolution on the set of states that is given by such a quantum Markov semigroup is gradient flow for the relative entropy with respect to σ in a particular Riemannian metric on the set of states. This metric is a non-commutative analog of the 2-Wasserstein metric, and in several interesting cases we are able to show, in analogy with work of Otto on gradient flows with respect to the classical 2-Wasserstein metric, that the relative entropy is strictly and uniformly convex with respect to the Riemannian metric introduced here. As a consequence, we obtain a number of new inequalities for the decay of relative entropy for ergodic quantum Markov semigroups with detailed balance.
AU - Carlen, Eric
AU - Maas, Jan
ID - 956
IS - 5
JF - Journal of Functional Analysis
SN - 00221236
TI - Gradient flow and entropy inequalities for quantum Markov semigroups with detailed balance
VL - 273
ER -
TY - CHAP
AB - Small molecule biosensors based on Forster resonance energy transfer (FRET) enable small molecule signaling to be monitored with high spatial and temporal resolution in complex cellular environments. FRET sensors can be constructed by fusing a pair of fluorescent proteins to a suitable recognition domain, such as a member of the solute-binding protein (SBP) superfamily. However, naturally occurring SBPs may be unsuitable for incorporation into FRET sensors due to their low thermostability, which may preclude imaging under physiological conditions, or because the positions of their N- and C-termini may be suboptimal for fusion of fluorescent proteins, which may limit the dynamic range of the resulting sensors. Here, we show how these problems can be overcome using ancestral protein reconstruction and circular permutation. Ancestral protein reconstruction, used as a protein engineering strategy, leverages phylogenetic information to improve the thermostability of proteins, while circular permutation enables the termini of an SBP to be repositioned to maximize the dynamic range of the resulting FRET sensor. We also provide a protocol for cloning the engineered SBPs into FRET sensor constructs using Golden Gate assembly and discuss considerations for in situ characterization of the FRET sensors.
AU - Clifton, Ben
AU - Whitfield, Jason
AU - Sanchez Romero, Inmaculada
AU - Herde, Michel
AU - Henneberger, Christian
AU - Janovjak, Harald L
AU - Jackson, Colin
ED - Stein, Viktor
ID - 957
SN - 10643745
T2 - Synthetic Protein Switches
TI - Ancestral protein reconstruction and circular permutation for improving the stability and dynamic range of FRET sensors
VL - 1596
ER -
TY - JOUR
AB - Consider the sum X(ξ)=∑ni=1aiξi, where a=(ai)ni=1 is a sequence of non-zero reals and ξ=(ξi)ni=1 is a sequence of i.i.d. Rademacher random variables (that is, Pr[ξi=1]=Pr[ξi=−1]=1/2). The classical Littlewood-Offord problem asks for the best possible upper bound on the concentration probabilities Pr[X=x]. In this paper we study a resilience version of the Littlewood-Offord problem: how many of the ξi is an adversary typically allowed to change without being able to force concentration on a particular value? We solve this problem asymptotically, and present a few interesting open problems.
AU - Bandeira, Afonso S.
AU - Ferber, Asaf
AU - Kwan, Matthew Alan
ID - 9574
JF - Electronic Notes in Discrete Mathematics
SN - 1571-0653
TI - Resilience for the Littlewood-Offord problem
VL - 61
ER -
TY - CHAP
AB - Biosensors that exploit Forster resonance energy transfer (FRET) can be used to visualize biological and physiological processes and are capable of providing detailed information in both spatial and temporal dimensions. In a FRET-based biosensor, substrate binding is associated with a change in the relative positions of two fluorophores, leading to a change in FRET efficiency that may be observed in the fluorescence spectrum. As a result, their design requires a ligand-binding protein that exhibits a conformational change upon binding. However, not all ligand-binding proteins produce responsive sensors upon conjugation to fluorescent proteins or dyes, and identifying the optimum locations for the fluorophores often involves labor-intensive iterative design or high-throughput screening. Combining the genetic fusion of a fluorescent protein to the ligand-binding protein with site-specific covalent attachment of a fluorescent dye can allow fine control over the positions of the two fluorophores, allowing the construction of very sensitive sensors. This relies upon the accurate prediction of the locations of the two fluorophores in bound and unbound states. In this chapter, we describe a method for computational identification of dye-attachment sites that allows the use of cysteine modification to attach synthetic dyes that can be paired with a fluorescent protein for the purposes of creating FRET sensors.
AU - Mitchell, Joshua
AU - Zhang, William
AU - Herde, Michel
AU - Henneberger, Christian
AU - Janovjak, Harald L
AU - O'Mara, Megan
AU - Jackson, Colin
ED - Stein, Viktor
ID - 958
SN - 10643745
T2 - Synthetic Protein Switches
TI - Method for developing optical sensors using a synthetic dye fluorescent protein FRET pair and computational modeling and assessment
VL - 1596
ER -
TY - JOUR
AB - Consider the sum X(ξ)=∑ni=1aiξi , where a=(ai)ni=1 is a sequence of non-zero reals and ξ=(ξi)ni=1 is a sequence of i.i.d. Rademacher random variables (that is, Pr[ξi=1]=Pr[ξi=−1]=1/2 ). The classical Littlewood-Offord problem asks for the best possible upper bound on the concentration probabilities Pr[X=x] . In this paper we study a resilience version of the Littlewood-Offord problem: how many of the ξi is an adversary typically allowed to change without being able to force concentration on a particular value? We solve this problem asymptotically, and present a few interesting open problems.
AU - Bandeira, Afonso S.
AU - Ferber, Asaf
AU - Kwan, Matthew Alan
ID - 9588
JF - Advances in Mathematics
SN - 0001-8708
TI - Resilience for the Littlewood–Offord problem
VL - 319
ER -
TY - JOUR
AB - We give an asymptotic expression for the expected number of spanning trees in a random graph with a given degree sequence , provided that the number of edges is at least , where is the maximum degree. A key part of our argument involves establishing a concentration result for a certain family of functions over random trees with given degrees, using Prüfer codes.
AU - Greenhill, Catherine
AU - Isaev, Mikhail
AU - Kwan, Matthew Alan
AU - McKay, Brendan D.
ID - 9589
JF - European Journal of Combinatorics
SN - 0195-6698
TI - The average number of spanning trees in sparse graphs with given degrees
VL - 63
ER -
TY - JOUR
AB - In this work it is shown that scale-free tails in metabolic flux distributions inferred in stationary models are an artifact due to reactions involved in thermodynamically unfeasible cycles, unbounded by physical constraints and in principle able to perform work without expenditure of free energy. After implementing thermodynamic constraints by removing such loops, metabolic flux distributions scale meaningfully with the physical limiting factors, acquiring in turn a richer multimodal structure potentially leading to symmetry breaking while optimizing for objective functions.
AU - De Martino, Daniele
ID - 959
IS - 6
JF - Physical Review E Statistical Nonlinear and Soft Matter Physics
SN - 24700045
TI - Scales and multimodal flux distributions in stationary metabolic network models via thermodynamics
VL - 95
ER -
TY - JOUR
AB - We show that for any fixed dense graph G and bounded-degree tree T on the same number of vertices, a modest random perturbation of G will typically contain a copy of T . This combines the viewpoints of the well-studied problems of embedding trees into fixed dense graphs and into random graphs, and extends a sizeable body of existing research on randomly perturbed graphs. Specifically, we show that there is c=c(α,Δ) such that if G is an n-vertex graph with minimum degree at least αn, and T is an n-vertex tree with maximum degree at most Δ , then if we add cn uniformly random edges to G, the resulting graph will contain T asymptotically almost surely (as n→∞ ). Our proof uses a lemma concerning the decomposition of a dense graph into super-regular pairs of comparable sizes, which may be of independent interest.
AU - Krivelevich, Michael
AU - Kwan, Matthew Alan
AU - Sudakov, Benny
ID - 9590
IS - 1
JF - SIAM Journal on Discrete Mathematics
SN - 0895-4801
TI - Bounded-degree spanning trees in randomly perturbed graphs
VL - 31
ER -
TY - CONF
AB - We present a new algorithm for model counting of a class of string constraints. In addition to the classic operation of concatenation, our class includes some recursively defined operations such as Kleene closure, and replacement of substrings. Additionally, our class also includes length constraints on the string expressions, which means, by requiring reasoning about numbers, that we face a multi-sorted logic. In the end, our string constraints are motivated by their use in programming for web applications. Our algorithm comprises two novel features: the ability to use a technique of (1) partial derivatives for constraints that are already in a solved form, i.e. a form where its (string) satisfiability is clearly displayed, and (2) non-progression, where cyclic reasoning in the reduction process may be terminated (thus allowing for the algorithm to look elsewhere). Finally, we experimentally compare our model counter with two recent works on model counting of similar constraints, SMC [18] and ABC [5], to demonstrate its superior performance.
AU - Trinh, Minh
AU - Chu, Duc Hiep
AU - Jaffar, Joxan
ED - Majumdar, Rupak
ED - Kunčak, Viktor
ID - 962
SN - 03029743
TI - Model counting for recursively-defined strings
VL - 10427
ER -
TY - CONF
AB - Network games are widely used as a model for selfish resource-allocation problems. In the classical model, each player selects a path connecting her source and target vertex. The cost of traversing an edge depends on the number of players that traverse it. Thus, it abstracts the fact that different users may use a resource at different times and for different durations, which plays an important role in defining the costs of the users in reality. For example, when transmitting packets in a communication network, routing traffic in a road network, or processing a task in a production system, the traversal of the network involves an inherent delay, and so sharing and congestion of resources crucially depends on time. We study timed network games , which add a time component to network games. Each vertex v in the network is associated with a cost function, mapping the load on v to the price that a player pays for staying in v for one time unit with this load. In addition, each edge has a guard, describing time intervals in which the edge can be traversed, forcing the players to spend time on vertices. Unlike earlier work that add a time component to network games, the time in our model is continuous and cannot be discretized. In particular, players have uncountably many strategies, and a game may have uncountably many pure Nash equilibria. We study properties of timed network games with cost-sharing or congestion cost functions: their stability, equilibrium inefficiency, and complexity. In particular, we show that the answer to the question whether we can restrict attention to boundary strategies, namely ones in which edges are traversed only at the boundaries of guards, is mixed.
AU - Avni, Guy
AU - Guha, Shibashis
AU - Kupferman, Orna
ID - 963
SN - 18688969
TI - Timed network games with clocks
VL - 83
ER -
TY - JOUR
AB - In this paper we discuss how the information contained in atomistic simulations of homogeneous nucleation should be used when fitting the parameters in macroscopic nucleation models. We show how the number of solid and liquid atoms in such simulations can be determined unambiguously by using a Gibbs dividing surface and how the free energy as a function of the number of solid atoms in the nucleus can thus be extracted. We then show that the parameters (the chemical potential, the interfacial free energy, and a Tolman correction) of a model based on classical nucleation theory can be fitted using the information contained in these free-energy profiles but that the parameters in such models are highly correlated. This correlation is unfortunate as it ensures that small errors in the computed free energy surface can give rise to large errors in the extrapolated properties of the fitted model. To resolve this problem we thus propose a method for fitting macroscopic nucleation models that uses simulations of planar interfaces and simulations of three-dimensional nuclei in tandem. We show that when the chemical potentials and the interface energy are pinned to their planar-interface values, more precise estimates for the Tolman length are obtained. Extrapolating the free energy profile obtained from small simulation boxes to larger nuclei is thus more reliable.
AU - Cheng, Bingqing
AU - Tribello, Gareth A.
AU - Ceriotti, Michele
ID - 9660
IS - 10
JF - The Journal of Chemical Physics
SN - 0021-9606
TI - The Gibbs free energy of homogeneous nucleation: From atomistic nuclei to the planar limit
VL - 147
ER -
TY - JOUR
AB - Macroscopic theories of nucleation such as classical nucleation theory envision that clusters of the bulk stable phase form inside the bulk metastable phase. Molecular dynamics simulations are often used to elucidate nucleation mechanisms, by capturing the microscopic configurations of all the atoms. In this paper, we introduce a thermodynamic model that links macroscopic theories and atomic-scale simulations and thus provide a simple and elegant framework for testing the limits of classical nucleation theory.
AU - Cheng, Bingqing
AU - Ceriotti, Michele
ID - 9661
IS - 3
JF - The Journal of Chemical Physics
SN - 0021-9606
TI - Bridging the gap between atomistic and macroscopic models of homogeneous nucleation
VL - 146
ER -
TY - GEN
AU - Nikolic, Nela
AU - Schreiber, Frank
AU - Dal Co, Alma
AU - Kiviet, Daniel
AU - Bergmiller, Tobias
AU - Littmann, Sten
AU - Kuypers, Marcel
AU - Ackermann, Martin
ID - 9844
TI - Source data for figures and tables
ER -
TY - GEN
AB - Estimates of 13 C-arabinose and 2 H-glucose uptake from the fractions of heavy isotopes measured in single cells
AU - Nikolic, Nela
AU - Schreiber, Frank
AU - Dal Co, Alma
AU - Kiviet, Daniel
AU - Bergmiller, Tobias
AU - Littmann, Sten
AU - Kuypers, Marcel
AU - Ackermann, Martin
ID - 9845
TI - Mathematical model
ER -
TY - GEN
AU - Nikolic, Nela
AU - Schreiber, Frank
AU - Dal Co, Alma
AU - Kiviet, Daniel
AU - Bergmiller, Tobias
AU - Littmann, Sten
AU - Kuypers, Marcel
AU - Ackermann, Martin
ID - 9846
TI - Supplementary methods
ER -
TY - GEN
AB - This text provides additional information about the model, a derivation of the analytic results in Eq (4), and details about simulations of an additional parameter set.
AU - Lukacisinova, Marta
AU - Novak, Sebastian
AU - Paixao, Tiago
ID - 9849
TI - Modelling and simulation details
ER -
TY - GEN
AB - In this text, we discuss how a cost of resistance and the possibility of lethal mutations impact our model.
AU - Lukacisinova, Marta
AU - Novak, Sebastian
AU - Paixao, Tiago
ID - 9850
TI - Extensions of the model
ER -
TY - GEN
AB - Based on the intuitive derivation of the dynamics of SIM allele frequency pM in the main text, we present a heuristic prediction for the long-term SIM allele frequencies with χ > 1 stresses and compare it to numerical simulations.
AU - Lukacisinova, Marta
AU - Novak, Sebastian
AU - Paixao, Tiago
ID - 9851
TI - Heuristic prediction for multiple stresses
ER -
TY - GEN
AB - We show how different combination strategies affect the fraction of individuals that are multi-resistant.
AU - Lukacisinova, Marta
AU - Novak, Sebastian
AU - Paixao, Tiago
ID - 9852
TI - Resistance frequencies for different combination strategies
ER -
TY - GEN
AB - Includes derivation of optimal estimation algorithm, generalisation to non-poisson noise statistics, correlated input noise, and implementation of in a multi-layer neural network.
AU - Chalk, Matthew J
AU - Masset, Paul
AU - Gutkin, Boris
AU - Denève, Sophie
ID - 9855
TI - Supplementary appendix
ER -
TY - GEN
AU - Schmidt, Tom
AU - Barton, Nicholas H
AU - Rasic, Gordana
AU - Turley, Andrew
AU - Montgomery, Brian
AU - Iturbe Ormaetxe, Inaki
AU - Cook, Peter
AU - Ryan, Peter
AU - Ritchie, Scott
AU - Hoffmann, Ary
AU - O’Neill, Scott
AU - Turelli, Michael
ID - 9856
TI - Supporting Information concerning additional likelihood analyses and results
ER -
TY - GEN
AU - Schmidt, Tom
AU - Barton, Nicholas H
AU - Rasic, Gordana
AU - Turley, Andrew
AU - Montgomery, Brian
AU - Iturbe Ormaetxe, Inaki
AU - Cook, Peter
AU - Ryan, Peter
AU - Ritchie, Scott
AU - Hoffmann, Ary
AU - O’Neill, Scott
AU - Turelli, Michael
ID - 9857
TI - Supporting information concerning observed wMel frequencies and analyses of habitat variables
ER -
TY - GEN
AU - Schmidt, Tom
AU - Barton, Nicholas H
AU - Rasic, Gordana
AU - Turley, Andrew
AU - Montgomery, Brian
AU - Iturbe Ormaetxe, Inaki
AU - Cook, Peter
AU - Ryan, Peter
AU - Ritchie, Scott
AU - Hoffmann, Ary
AU - O’Neill, Scott
AU - Turelli, Michael
ID - 9858
TI - Excel file with data on mosquito densities, Wolbachia infection status and housing characteristics
ER -
TY - JOUR
AB - The current-phase relation (CPR) of a Josephson junction (JJ) determines how the supercurrent evolves with the superconducting phase difference across the junction. Knowledge of the CPR is essential in order to understand the response of a JJ to various external parameters. Despite the rising interest in ultraclean encapsulated graphene JJs, the CPR of such junctions remains unknown. Here, we use a fully gate-tunable graphene superconducting quantum intereference device (SQUID) to determine the CPR of ballistic graphene JJs. Each of the two JJs in the SQUID is made with graphene encapsulated in hexagonal boron nitride. By independently controlling the critical current of the JJs, we can operate the SQUID either in a symmetric or asymmetric configuration. The highly asymmetric SQUID allows us to phase-bias one of the JJs and thereby directly obtain its CPR. The CPR is found to be skewed, deviating significantly from a sinusoidal form. The skewness can be tuned with the gate voltage and oscillates in antiphase with Fabry-Pérot resistance oscillations of the ballistic graphene cavity. We compare our experiments with tight-binding calculations that include realistic graphene-superconductor interfaces and find a good qualitative agreement.
AU - Nanda, Gaurav
AU - Aguilera Servin, Juan L
AU - Rakyta, Péter
AU - Kormányos, Andor
AU - Kleiner, Reinhold
AU - Koelle, Dieter
AU - Watanabe, Kazuo
AU - Taniguchi, Takashi
AU - Vandersypen, Lieven
AU - Goswami, Srijit
ID - 988
IS - 6
JF - Nano Letters
SN - 15306984
TI - Current-phase relation of ballistic graphene Josephson junctions
VL - 17
ER -
TY - CONF
AB - We present a generalized optimal transport model in which the mass-preserving constraint for the L2-Wasserstein distance is relaxed by introducing a source term in the continuity equation. The source term is also incorporated in the path energy by means of its squared L2-norm in time of a functional with linear growth in space. This extension of the original transport model enables local density modulations, which is a desirable feature in applications such as image warping and blending. A key advantage of the use of a functional with linear growth in space is that it allows for singular sources and sinks, which can be supported on points or lines. On a technical level, the L2-norm in time ensures a disintegration of the source in time, which we use to obtain the well-posedness of the model and the existence of geodesic paths. The numerical discretization is based on the proximal splitting approach [18] and selected numerical test cases show the potential of the proposed approach. Furthermore, the approach is applied to the warping and blending of textures.
AU - Maas, Jan
AU - Rumpf, Martin
AU - Simon, Stefan
ED - Lauze, François
ED - Dong, Yiqiu
ED - Bjorholm Dahl, Anders
ID - 989
SN - 03029743
TI - Transport based image morphing with intensity modulation
VL - 10302
ER -
TY - JOUR
AB - Assortative mating is an important driver of speciation in populations with gene flow and is predicted to evolve under certain conditions in few-locus models. However, the evolution of assortment is less understood for mating based on quantitative traits, which are often characterized by high genetic variability and extensive linkage disequilibrium between trait loci. We explore this scenario for a two-deme model with migration, by considering a single polygenic trait subject to divergent viability selection across demes, as well as assortative mating and sexual selection within demes, and investigate how trait divergence is shaped by various evolutionary forces. Our analysis reveals the existence of sharp thresholds of assortment strength, at which divergence increases dramatically. We also study the evolution of assortment via invasion of modifiers of mate discrimination and show that the ES assortment strength has an intermediate value under a range of migration-selection parameters, even in diverged populations, due to subtle effects which depend sensitively on the extent of phenotypic variation within these populations. The evolutionary dynamics of the polygenic trait is studied using the hypergeometric and infinitesimal models. We further investigate the sensitivity of our results to the assumptions of the hypergeometric model, using individual-based simulations.
AU - Sachdeva, Himani
AU - Barton, Nicholas H
ID - 990
IS - 6
JF - Evolution; International Journal of Organic Evolution
SN - 00143820
TI - Divergence and evolution of assortative mating in a polygenic trait model of speciation with gene flow
VL - 71
ER -
TY - JOUR
AB - Synaptotagmin 7 (Syt7) was originally identified as a slow Ca2+ sensor for lysosome fusion, but its function at fast synapses is controversial. The paper by Luo and Südhof (2017) in this issue of Neuron shows that at the calyx of Held in the auditory brainstem Syt7 triggers asynchronous release during stimulus trains, resulting in reliable and temporally precise high-frequency transmission. Thus, a slow Ca2+ sensor contributes to the fast signaling properties of the calyx synapse.
AU - Chen, Chong
AU - Jonas, Peter M
ID - 991
IS - 4
JF - Neuron
SN - 08966273
TI - Synaptotagmins: That’s why so many
VL - 94
ER -
TY - THES
AB - An instance of the Constraint Satisfaction Problem (CSP) is given by a finite set of
variables, a finite domain of labels, and a set of constraints, each constraint acting on
a subset of the variables. The goal is to find an assignment of labels to its variables
that satisfies all constraints (or decide whether one exists). If we allow more general
“soft” constraints, which come with (possibly infinite) costs of particular assignments,
we obtain instances from a richer class called Valued Constraint Satisfaction Problem
(VCSP). There the goal is to find an assignment with minimum total cost.
In this thesis, we focus (assuming that P
6
=
NP) on classifying computational com-
plexity of CSPs and VCSPs under certain restricting conditions. Two results are the core
content of the work. In one of them, we consider VCSPs parametrized by a constraint
language, that is the set of “soft” constraints allowed to form the instances, and finish
the complexity classification modulo (missing pieces of) complexity classification for
analogously parametrized CSP. The other result is a generalization of Edmonds’ perfect
matching algorithm. This generalization contributes to complexity classfications in two
ways. First, it gives a new (largest known) polynomial-time solvable class of Boolean
CSPs in which every variable may appear in at most two constraints and second, it
settles full classification of Boolean CSPs with planar drawing (again parametrized by a
constraint language).
AU - Rolinek, Michal
ID - 992
TI - Complexity of constraint satisfaction
ER -
TY - JOUR
AB - In real-world applications, observations are often constrained to a small fraction of a system. Such spatial subsampling can be caused by the inaccessibility or the sheer size of the system, and cannot be overcome by longer sampling. Spatial subsampling can strongly bias inferences about a system’s aggregated properties. To overcome the bias, we derive analytically a subsampling scaling framework that is applicable to different observables, including distributions of neuronal avalanches, of number of people infected during an epidemic outbreak, and of node degrees. We demonstrate how to infer the correct distributions of the underlying full system, how to apply it to distinguish critical from subcritical systems, and how to disentangle subsampling and finite size effects. Lastly, we apply subsampling scaling to neuronal avalanche models and to recordings from developing neural networks. We show that only mature, but not young networks follow power-law scaling, indicating self-organization to criticality during development.
AU - Levina (Martius), Anna
AU - Priesemann, Viola
ID - 993
JF - Nature Communications
SN - 20411723
TI - Subsampling scaling
VL - 8
ER -
TY - JOUR
AB - The formation of vortices is usually considered to be the main mechanism of angular momentum disposal in superfluids. Recently, it was predicted that a superfluid can acquire angular momentum via an alternative, microscopic route -- namely, through interaction with rotating impurities, forming so-called `angulon quasiparticles' [Phys. Rev. Lett. 114, 203001 (2015)]. The angulon instabilities correspond to transfer of a small number of angular momentum quanta from the impurity to the superfluid, as opposed to vortex instabilities, where angular momentum is quantized in units of ℏ per atom. Furthermore, since conventional impurities (such as molecules) represent three-dimensional (3D) rotors, the angular momentum transferred is intrinsically 3D as well, as opposed to a merely planar rotation which is inherent to vortices. Herein we show that the angulon theory can explain the anomalous broadening of the spectroscopic lines observed for CH 3 and NH 3 molecules in superfluid helium nanodroplets, thereby providing a fingerprint of the emerging angulon instabilities in experiment.
AU - Cherepanov, Igor
AU - Lemeshko, Mikhail
ID - 994
IS - 3
JF - Physical Review Materials
TI - Fingerprints of angulon instabilities in the spectra of matrix-isolated molecules
VL - 1
ER -
TY - JOUR
AB - Recently it was shown that an impurity exchanging orbital angular momentum with a surrounding bath can be described in terms of the angulon quasiparticle [Phys. Rev. Lett. 118, 095301 (2017)]. The angulon consists of a quantum rotor dressed by a many-particle field of boson excitations, and can be formed out of, for example, a molecule or a nonspherical atom in superfluid helium, or out of an electron coupled to lattice phonons or a Bose condensate. Here we develop an approach to the angulon based on the path-integral formalism, which sets the ground for a systematic, perturbative treatment of the angulon problem. The resulting perturbation series can be interpreted in terms of Feynman diagrams, from which, in turn, one can derive a set of diagrammatic rules. These rules extend the machinery of the graphical theory of angular momentum - well known from theoretical atomic spectroscopy - to the case where an environment with an infinite number of degrees of freedom is present. In particular, we show that each diagram can be interpreted as a 'skeleton', which enforces angular momentum conservation, dressed by an additional many-body contribution. This connection between the angulon theory and the graphical theory of angular momentum is particularly important as it allows to systematically and substantially simplify the analytical representation of each diagram. In order to exemplify the technique, we calculate the 1- and 2-loop contributions to the angulon self-energy, the spectral function, and the quasiparticle weight. The diagrammatic theory we develop paves the way to investigate next-to-leading order quantities in a more compact way compared to the variational approaches.
AU - Bighin, Giacomo
AU - Lemeshko, Mikhail
ID - 995
IS - 8
JF - Physical Review B - Condensed Matter and Materials Physics
SN - 24699950
TI - Diagrammatic approach to orbital quantum impurities interacting with a many-particle environment
VL - 96
ER -
TY - JOUR
AB - Iodine (I 2 ) molecules embedded in He nanodroplets are aligned by a 160 ps long laser pulse. The highest degree of alignment, occurring at the peak of the pulse and quantified by ⟨cos 2 θ 2D ⟩ , is measured as a function of the laser intensity. The results are well described by ⟨cos 2 θ 2D ⟩ calculated for a gas of isolated molecules each with an effective rotational constant of 0.6 times the gas-phase value, and at a temperature of 0.4 K. Theoretical analysis using the angulon quasiparticle to describe rotating molecules in superfluid helium rationalizes why the alignment mechanism is similar to that of isolated molecules with an effective rotational constant. A major advantage of molecules in He droplets is that their 0.4 K temperature leads to stronger alignment than what can generally be achieved for gas phase molecules -- here demonstrated by a direct comparison of the droplet results to measurements on a ∼ 1 K supersonic beam of isolated molecules. This point is further illustrated for more complex system by measurements on 1,4-diiodobenzene and 1,4-dibromobenzene. For all three molecular species studied the highest values of ⟨cos 2 θ 2D ⟩ achieved in He droplets exceed 0.96.
AU - Shepperson, Benjamin
AU - Chatterley, Adam
AU - Søndergaard, Anders
AU - Christiansen, Lars
AU - Lemeshko, Mikhail
AU - Stapelfeldt, Henrik
ID - 996
IS - 1
JF - The Journal of Chemical Physics
SN - 00219606
TI - Strongly aligned molecules inside helium droplets in the near-adiabatic regime
VL - 147
ER -
TY - JOUR
AB - Recently it was shown that molecules rotating in superfluid helium can be described in terms of the angulon quasiparticles (Phys. Rev. Lett. 118, 095301 (2017)). Here we demonstrate that in the experimentally realized regime the angulon can be seen as a point charge on a 2-sphere interacting with a gauge field of a non-abelian magnetic monopole. Unlike in several other settings, the gauge fields of the angulon problem emerge in the real coordinate space, as opposed to the momentum space or some effective parameter space. Furthermore, we find a topological transition associated with making the monopole abelian, which takes place in the vicinity of the previously reported angulon instabilities. These results pave the way for studying topological phenomena in experiments on molecules trapped in superfluid helium nanodroplets, as well as on other realizations of orbital impurity problems.
AU - Yakaboylu, Enderalp
AU - Deuchert, Andreas
AU - Lemeshko, Mikhail
ID - 997
IS - 23
JF - APS Physics, Physical Review Letters
SN - 00319007
TI - Emergence of non-abelian magnetic monopoles in a quantum impurity problem
VL - 119
ER -
TY - CONF
AB - A major open problem on the road to artificial intelligence is the development of incrementally learning systems that learn about more and more concepts over time from a stream of data. In this work, we introduce a new training strategy, iCaRL, that allows learning in such a class-incremental way: only the training data for a small number of classes has to be present at the same time and new classes can be added progressively. iCaRL learns strong classifiers and a data representation simultaneously. This distinguishes it from earlier works that were fundamentally limited to fixed data representations and therefore incompatible with deep learning architectures. We show by experiments on CIFAR-100 and ImageNet ILSVRC 2012 data that iCaRL can learn many classes incrementally over a long period of time where other strategies quickly fail.
AU - Rebuffi, Sylvestre Alvise
AU - Kolesnikov, Alexander
AU - Sperl, Georg
AU - Lampert, Christoph
ID - 998
SN - 978-153860457-1
TI - iCaRL: Incremental classifier and representation learning
VL - 2017
ER -
TY - CONF
AB - In multi-task learning, a learner is given a collection of prediction tasks and needs to solve all of them. In contrast to previous work, which required that annotated training data must be available for all tasks, we consider a new setting, in which for some tasks, potentially most of them, only unlabeled training data is provided. Consequently, to solve all tasks, information must be transferred between tasks with labels and tasks without labels. Focusing on an instance-based transfer method we analyze two variants of this setting: when the set of labeled tasks is fixed, and when it can be actively selected by the learner. We state and prove a generalization bound that covers both scenarios and derive from it an algorithm for making the choice of labeled tasks (in the active case) and for transferring information between the tasks in a principled way. We also illustrate the effectiveness of the algorithm on synthetic and real data.
AU - Pentina, Anastasia
AU - Lampert, Christoph
ID - 999
SN - 9781510855144
TI - Multi-task learning with labeled and unlabeled tasks
VL - 70
ER -
TY - JOUR
AB - This review captures the synthesis, assembly, properties, and applications of copper chalcogenide NCs, which have achieved significant research interest in the last decade due to their compositional and structural versatility. The outstanding functional properties of these materials stems from the relationship between their band structure and defect concentration, including charge carrier concentration and electronic conductivity character, which consequently affects their optoelectronic, optical, and plasmonic properties. This, combined with several metastable crystal phases and stoichiometries and the low energy of formation of defects, makes the reproducible synthesis of these materials, with tunable parameters, remarkable. Further to this, the review captures the progress of the hierarchical assembly of these NCs, which bridges the link between their discrete and collective properties. Their ubiquitous application set has cross-cut energy conversion (photovoltaics, photocatalysis, thermoelectrics), energy storage (lithium-ion batteries, hydrogen generation), emissive materials (plasmonics, LEDs, biolabelling), sensors (electrochemical, biochemical), biomedical devices (magnetic resonance imaging, X-ray computer tomography), and medical therapies (photochemothermal therapies, immunotherapy, radiotherapy, and drug delivery). The confluence of advances in the synthesis, assembly, and application of these NCs in the past decade has the potential to significantly impact society, both economically and environmentally.
AU - Coughlan, Claudia
AU - Ibanez Sabate, Maria
AU - Dobrozhan, Oleksandr
AU - Singh, Ajay
AU - Cabot, Andreu
AU - Ryan, Kevin
ID - 373
IS - 9
JF - Chemical Reviews
TI - Compound copper chalcogenide nanocrystals
VL - 117
ER -
TY - JOUR
AB - The conversion of thermal energy to electricity and vice versa by means of solid state thermoelectric devices is extremely appealing. However, its cost-effectiveness is seriously hampered by the relatively high production cost and low efficiency of current thermoelectric materials and devices. To overcome present challenges and enable a successful deployment of thermoelectric systems in their wide application range, materials with significantly improved performance need to be developed. Nanostructuration can help in several ways to reach the very particular group of properties required to achieve high thermoelectric performances. Nanodomains inserted within a crystalline matrix can provide large charge carrier concentrations without strongly influencing their mobility, thus allowing to reach very high electrical conductivities. Nanostructured materials contain numerous grain boundaries that efficiently scatter mid- and long-wavelength phonons thus reducing the thermal conductivity. Furthermore, nanocrystalline domains can enhance the Seebeck coefficient by modifying the density of states and/or providing type- and energy-dependent charge carrier scattering. All these advantages can only be reached when engineering a complex type of material, nanocomposites, with exquisite control over structural and chemical parameters at multiple length scales. Since current conventional nanomaterial production technologies lack such level of control, alternative strategies need to be developed and adjusted to the specifics of the field. A particularly suitable approach to produce nanocomposites with unique level of control over their structural and compositional parameters is their bottom-up engineering from solution-processed nanoparticles. In this work, we review the state-of-the-art of this technology applied to the thermoelectric field, including the synthesis of nanoparticles of suitable materials with precisely engineered composition and surface chemistry, their combination and consolidation into nanostructured materials, the strategies to electronically dope such materials and the attempts to fabricate thermoelectric devices using nanoparticle-based nanopowders and inks.
AU - Ortega, Silvia
AU - Ibanez Sabate, Maria
AU - Liu, Yu
AU - Zhang, Yu
AU - Kovalenko, Maksym
AU - Cadavid, Doris
AU - Cabot, Andreu
ID - 374
IS - 12
JF - Chemical Society Reviews
TI - Bottom up engineering of thermoelectric nanomaterials and devices from solution processed nanoparticle building blocks
VL - 46
ER -
TY - JOUR
AB - Branched nanocrystals (NCs) enable high atomic surface exposure within a crystalline network that provides avenues for charge transport. This combination of properties makes branched NCs particularly suitable for a range of applications where both interaction with the media and charge transport are involved. Herein we report on the colloidal synthesis of branched ceria NCs by means of a ligand-mediated overgrowth mechanism. In particular, the differential coverage of oleic acid as an X-type ligand at ceria facets with different atomic density, atomic coordination deficiency, and oxygen vacancy density resulted in a preferential growth in the [111] direction and thus in the formation of ceria octapods. Alcohols, through an esterification alcoholysis reaction, promoted faster growth rates that translated into nanostructures with higher geometrical complexity, increasing the branch aspect ratio and triggering the formation of side branches. On the other hand, the presence of water resulted in a significant reduction of the growth rate, decreasing the reaction yield and eliminating side branching, which we associate to a blocking of the surface reaction sites or a displacement of the alcoholysis reaction. Overall, adjusting the amounts of each chemical, well-defined branched ceria NCs with tuned number, thickness, and length of branches and with overall size ranging from 5 to 45 nm could be produced. We further demonstrate that such branched ceria NCs are able to provide higher surface areas and related oxygen storage capacities (OSC) than quasi-spherical NCs.
AU - Berestok, Taisiia
AU - Guardia, Pablo
AU - Blanco, Javier
AU - Nafria, Raquel
AU - Torruella, Pau
AU - López Conesa, Luis
AU - Estradé, Sònia
AU - Ibanez Sabate, Maria
AU - De Roo, Jonathan
AU - Luo, Zhishan
AU - Cadavid, Doris
AU - Martins, José
AU - Kovalenko, Maksym
AU - Peiró, Francesca
AU - Cabot, Andreu
ID - 375
IS - 10
JF - Chemistry of Materials
TI - Tuning branching in ceria nanocrystals
VL - 29
ER -
TY - JOUR
AB - Three-dimensional topological insulators are bulk insulators with Z 2 topological electronic order that gives rise to conducting light-like surface states. These surface electrons are exceptionally resistant to localization by non-magnetic disorder, and have been adopted as the basis for a wide range of proposals to achieve new quasiparticle species and device functionality. Recent studies have yielded a surprise by showing that in spite of resisting localization, topological insulator surface electrons can be reshaped by defects into distinctive resonance states. Here we use numerical simulations and scanning tunnelling microscopy data to show that these resonance states have significance well beyond the localized regime usually associated with impurity bands. At native densities in the model Bi2X3 (X=Bi, Te) compounds, defect resonance states are predicted to generate a new quantum basis for an emergent electron gas that supports diffusive electrical transport.
AU - Xu, Yishuai
AU - Chiu, Janet
AU - Miao, Lin
AU - He, Haowei
AU - Alpichshev, Zhanybek
AU - Kapitulnik, Aharon
AU - Biswas, Rudro
AU - Wray, Lewis
ID - 391
JF - Nature Communications
TI - Disorder enabled band structure engineering of a topological insulator surface
VL - 8
ER -
TY - JOUR
AB - We used femtosecond optical pump-probe spectroscopy to study the photoinduced change in reflectivity of thin films of the electron-doped cuprate La2-xCexCuO4 (LCCO) with dopings of x=0.08 (underdoped) and x=0.11 (optimally doped). Above Tc, we observe fluence-dependent relaxation rates that begin at a temperature similar to the one where transport measurements first show signatures of antiferromagnetic correlations. Upon suppressing superconductivity with a magnetic field, it is found that the fluence and temperature dependence of relaxation rates are consistent with bimolecular recombination of electrons and holes across a gap (2ΔAF) originating from antiferromagnetic correlations which comprise the pseudogap in electron-doped cuprates. This can be used to learn about coupling between electrons and high-energy (ω>2ΔAF) excitations in these compounds and set limits on the time scales on which antiferromagnetic correlations are static.
AU - Vishik, Inna
AU - Mahmood, Fahad
AU - Alpichshev, Zhanybek
AU - Gedik, Nuh
AU - Higgins, Joshu
AU - Greene, Richard
ID - 392
IS - 11
JF - Physical Review B
TI - Ultrafast dynamics in the presence of antiferromagnetic correlations in electron doped cuprate La2 xCexCuO4±δ
VL - 95
ER -
TY - JOUR
AB - We use a three-pulse ultrafast optical spectroscopy to study the relaxation processes in a frustrated Mott insulator Na2IrO3. By being able to independently produce the out-of-equilibrium bound states (excitons) of doublons and holons with the first pulse and suppress the underlying antiferromagnetic order with the second one, we were able to elucidate the relaxation mechanism of quasiparticles in this system. By observing the difference in the exciton dynamics in the magnetically ordered and disordered phases we found that the mass of this quasiparticle is mostly determined by its interaction with the surrounding spins.
AU - Alpichshev, Zhanybek
AU - Sie, Edbert
AU - Mahmood, Fahad
AU - Cao, Gang
AU - Gedik, Nuh
ID - 393
IS - 23
JF - Physical Review B
TI - Origin of the exciton mass in the frustrated Mott insulator Na2IrO3
VL - 96
ER -