TY - JOUR AB - Voronoi diagrams and Delaunay triangulations have been extensively used to represent and compute geometric features of point configurations. We introduce a generalization to poset diagrams and poset complexes, which contain order-k and degree-k Voronoi diagrams and their duals as special cases. Extending a result of Aurenhammer from 1990, we show how to construct poset diagrams as weighted Voronoi diagrams of average balls. AU - Edelsbrunner, Herbert AU - Iglesias Ham, Mabel ID - 1295 JF - Electronic Notes in Discrete Mathematics TI - Multiple covers with balls II: Weighted averages VL - 54 ER - TY - JOUR AB - We give explicit formulas and algorithms for the computation of the Thurston–Bennequin invariant of a nullhomologous Legendrian knot on a page of a contact open book and on Heegaard surfaces in convex position. Furthermore, we extend the results to rationally nullhomologous knots in arbitrary 3-manifolds. AU - Durst, Sebastian AU - Kegel, Marc AU - Klukas, Mirko D ID - 1292 IS - 2 JF - Acta Mathematica Hungarica TI - Computing the Thurston–Bennequin invariant in open books VL - 150 ER - TY - JOUR AB - In this paper we investigate the existence of closed billiard trajectories in not necessarily smooth convex bodies. In particular, we show that if a body K ⊂ Rd has the property that the tangent cone of every non-smooth point q ∉ ∂K is acute (in a certain sense), then there is a closed billiard trajectory in K. AU - Akopyan, Arseniy AU - Balitskiy, Alexey ID - 1330 IS - 2 JF - Israel Journal of Mathematics TI - Billiards in convex bodies with acute angles VL - 216 ER - TY - JOUR AB - We apply the technique of Károly Bezdek and Daniel Bezdek to study billiard trajectories in convex bodies, when the length is measured with a (possibly asymmetric) norm. We prove a lower bound for the length of the shortest closed billiard trajectory, related to the non-symmetric Mahler problem. With this technique we are able to give short and elementary proofs to some known results. AU - Akopyan, Arseniy AU - Balitskiy, Alexey AU - Karasev, Roman AU - Sharipova, Anastasia ID - 1360 IS - 10 JF - Proceedings of the American Mathematical Society TI - Elementary approach to closed billiard trajectories in asymmetric normed spaces VL - 144 ER - TY - JOUR AB - The concept of well group in a special but important case captures homological properties of the zero set of a continuous map (Formula presented.) on a compact space K that are invariant with respect to perturbations of f. The perturbations are arbitrary continuous maps within (Formula presented.) distance r from f for a given (Formula presented.). The main drawback of the approach is that the computability of well groups was shown only when (Formula presented.) or (Formula presented.). Our contribution to the theory of well groups is twofold: on the one hand we improve on the computability issue, but on the other hand we present a range of examples where the well groups are incomplete invariants, that is, fail to capture certain important robust properties of the zero set. For the first part, we identify a computable subgroup of the well group that is obtained by cap product with the pullback of the orientation of (Formula presented.) by f. In other words, well groups can be algorithmically approximated from below. When f is smooth and (Formula presented.), our approximation of the (Formula presented.)th well group is exact. For the second part, we find examples of maps (Formula presented.) with all well groups isomorphic but whose perturbations have different zero sets. We discuss on a possible replacement of the well groups of vector valued maps by an invariant of a better descriptive power and computability status. AU - Franek, Peter AU - Krcál, Marek ID - 1408 IS - 1 JF - Discrete & Computational Geometry TI - On computability and triviality of well groups VL - 56 ER - TY - JOUR AB - Aiming at the automatic diagnosis of tumors using narrow band imaging (NBI) magnifying endoscopic (ME) images of the stomach, we combine methods from image processing, topology, geometry, and machine learning to classify patterns into three classes: oval, tubular and irregular. Training the algorithm on a small number of images of each type, we achieve a high rate of correct classifications. The analysis of the learning algorithm reveals that a handful of geometric and topological features are responsible for the overwhelming majority of decisions. AU - Dunaeva, Olga AU - Edelsbrunner, Herbert AU - Lukyanov, Anton AU - Machin, Michael AU - Malkova, Daria AU - Kuvaev, Roman AU - Kashin, Sergey ID - 1289 IS - 1 JF - Pattern Recognition Letters TI - The classification of endoscopy images with persistent homology VL - 83 ER - TY - JOUR AB - We study the discrepancy of jittered sampling sets: such a set P⊂ [0,1]d is generated for fixed m∈ℕ by partitioning [0,1]d into md axis aligned cubes of equal measure and placing a random point inside each of the N=md cubes. We prove that, for N sufficiently large, 1/10 d/N1/2+1/2d ≤EDN∗(P)≤ √d(log N) 1/2/N1/2+1/2d, where the upper bound with an unspecified constant Cd was proven earlier by Beck. Our proof makes crucial use of the sharp Dvoretzky-Kiefer-Wolfowitz inequality and a suitably taylored Bernstein inequality; we have reasons to believe that the upper bound has the sharp scaling in N. Additional heuristics suggest that jittered sampling should be able to improve known bounds on the inverse of the star-discrepancy in the regime N≳dd. We also prove a partition principle showing that every partition of [0,1]d combined with a jittered sampling construction gives rise to a set whose expected squared L2-discrepancy is smaller than that of purely random points. AU - Pausinger, Florian AU - Steinerberger, Stefan ID - 1617 JF - Journal of Complexity TI - On the discrepancy of jittered sampling VL - 33 ER - TY - CONF AB - Although the concept of functional plane for naive plane is studied and reported in the literature in great detail, no similar study is yet found for naive sphere. This article exposes the first study in this line, opening up further prospects of analyzing the topological properties of sphere in the discrete space. We show that each quadraginta octant Q of a naive sphere forms a bijection with its projected pixel set on a unique coordinate plane, which thereby serves as the functional plane of Q, and hence gives rise to merely mono-jumps during back projection. The other two coordinate planes serve as para-functional and dia-functional planes for Q, as the former is ‘mono-jumping’ but not bijective, whereas the latter holds neither of the two. Owing to this, the quadraginta octants form symmetry groups and subgroups with equivalent jump conditions. We also show a potential application in generating a special class of discrete 3D circles based on back projection and jump bridging by Steiner voxels. A circle in this class possesses 4-symmetry, uniqueness, and bounded distance from the underlying real sphere and real plane. AU - Biswas, Ranita AU - Bhowmick, Partha ID - 5806 SN - 0302-9743 T2 - Discrete Geometry for Computer Imagery TI - On functionality of quadraginta octants of naive sphere with application to circle drawing VL - 9647 ER - TY - CHAP AB - Discretization of sphere in the integer space follows a particular discretization scheme, which, in principle, conforms to some topological model. This eventually gives rise to interesting topological properties of a discrete spherical surface, which need to be investigated for its analytical characterization. This paper presents some novel results on the local topological properties of the naive model of discrete sphere. They follow from the bijection of each quadraginta octant of naive sphere with its projection map called f -map on the corresponding functional plane and from the characterization of certain jumps in the f-map. As an application, we have shown how these properties can be used in designing an efficient reconstruction algorithm for a naive spherical surface from an input voxel set when it is sparse or noisy. AU - Sen, Nabhasmita AU - Biswas, Ranita AU - Bhowmick, Partha ID - 5805 SN - 0302-9743 T2 - Computational Topology in Image Context TI - On some local topological properties of naive discrete sphere VL - 9667 ER - TY - CHAP AB - A discrete spherical circle is a topologically well-connected 3D circle in the integer space, which belongs to a discrete sphere as well as a discrete plane. It is one of the most important 3D geometric primitives, but has not possibly yet been studied up to its merit. This paper is a maiden exposition of some of its elementary properties, which indicates a sense of its profound theoretical prospects in the framework of digital geometry. We have shown how different types of discretization can lead to forbidden and admissible classes, when one attempts to define the discretization of a spherical circle in terms of intersection between a discrete sphere and a discrete plane. Several fundamental theoretical results have been presented, the algorithm for construction of discrete spherical circles has been discussed, and some test results have been furnished to demonstrate its practicality and usefulness. AU - Biswas, Ranita AU - Bhowmick, Partha AU - Brimkov, Valentin E. ID - 5809 SN - 0302-9743 T2 - Combinatorial image analysis TI - On the connectivity and smoothness of discrete spherical circles VL - 9448 ER - TY - JOUR AB - We introduce a modification of the classic notion of intrinsic volume using persistence moments of height functions. Evaluating the modified first intrinsic volume on digital approximations of a compact body with smoothly embedded boundary in Rn, we prove convergence to the first intrinsic volume of the body as the resolution of the approximation improves. We have weaker results for the other modified intrinsic volumes, proving they converge to the corresponding intrinsic volumes of the n-dimensional unit ball. AU - Edelsbrunner, Herbert AU - Pausinger, Florian ID - 1662 JF - Advances in Mathematics TI - Approximation and convergence of the intrinsic volume VL - 287 ER - TY - CONF AB - We consider the problem of statistical computations with persistence diagrams, a summary representation of topological features in data. These diagrams encode persistent homology, a widely used invariant in topological data analysis. While several avenues towards a statistical treatment of the diagrams have been explored recently, we follow an alternative route that is motivated by the success of methods based on the embedding of probability measures into reproducing kernel Hilbert spaces. In fact, a positive definite kernel on persistence diagrams has recently been proposed, connecting persistent homology to popular kernel-based learning techniques such as support vector machines. However, important properties of that kernel enabling a principled use in the context of probability measure embeddings remain to be explored. Our contribution is to close this gap by proving universality of a variant of the original kernel, and to demonstrate its effective use in twosample hypothesis testing on synthetic as well as real-world data. AU - Kwitt, Roland AU - Huber, Stefan AU - Niethammer, Marc AU - Lin, Weili AU - Bauer, Ulrich ID - 1424 TI - Statistical topological data analysis-A kernel perspective VL - 28 ER - TY - CONF AB - Topological data analysis offers a rich source of valuable information to study vision problems. Yet, so far we lack a theoretically sound connection to popular kernel-based learning techniques, such as kernel SVMs or kernel PCA. In this work, we establish such a connection by designing a multi-scale kernel for persistence diagrams, a stable summary representation of topological features in data. We show that this kernel is positive definite and prove its stability with respect to the 1-Wasserstein distance. Experiments on two benchmark datasets for 3D shape classification/retrieval and texture recognition show considerable performance gains of the proposed method compared to an alternative approach that is based on the recently introduced persistence landscapes. AU - Reininghaus, Jan AU - Huber, Stefan AU - Bauer, Ulrich AU - Kwitt, Roland ID - 1483 TI - A stable multi-scale kernel for topological machine learning ER - TY - CONF AB - Motivated by biological questions, we study configurations of equal-sized disks in the Euclidean plane that neither pack nor cover. Measuring the quality by the probability that a random point lies in exactly one disk, we show that the regular hexagonal grid gives the maximum among lattice configurations. AU - Edelsbrunner, Herbert AU - Iglesias Ham, Mabel AU - Kurlin, Vitaliy ID - 1495 T2 - Proceedings of the 27th Canadian Conference on Computational Geometry TI - Relaxed disk packing VL - 2015-August ER - TY - CONF AB - The concept of well group in a special but important case captures homological properties of the zero set of a continuous map f from K to R^n on a compact space K that are invariant with respect to perturbations of f. The perturbations are arbitrary continuous maps within L_infty distance r from f for a given r > 0. The main drawback of the approach is that the computability of well groups was shown only when dim K = n or n = 1. Our contribution to the theory of well groups is twofold: on the one hand we improve on the computability issue, but on the other hand we present a range of examples where the well groups are incomplete invariants, that is, fail to capture certain important robust properties of the zero set. For the first part, we identify a computable subgroup of the well group that is obtained by cap product with the pullback of the orientation of R^n by f. In other words, well groups can be algorithmically approximated from below. When f is smooth and dim K < 2n-2, our approximation of the (dim K-n)th well group is exact. For the second part, we find examples of maps f, f' from K to R^n with all well groups isomorphic but whose perturbations have different zero sets. We discuss on a possible replacement of the well groups of vector valued maps by an invariant of a better descriptive power and computability status. AU - Franek, Peter AU - Krcál, Marek ID - 1510 TI - On computability and triviality of well groups VL - 34 ER - TY - CHAP AB - The Heat Kernel Signature (HKS) is a scalar quantity which is derived from the heat kernel of a given shape. Due to its robustness, isometry invariance, and multiscale nature, it has been successfully applied in many geometric applications. From a more general point of view, the HKS can be considered as a descriptor of the metric of a Riemannian manifold. Given a symmetric positive definite tensor field we may interpret it as the metric of some Riemannian manifold and thereby apply the HKS to visualize and analyze the given tensor data. In this paper, we propose a generalization of this approach that enables the treatment of indefinite tensor fields, like the stress tensor, by interpreting them as a generator of a positive definite tensor field. To investigate the usefulness of this approach we consider the stress tensor from the two-point-load model example and from a mechanical work piece. AU - Zobel, Valentin AU - Reininghaus, Jan AU - Hotz, Ingrid ED - Hotz, Ingrid ED - Schultz, Thomas ID - 1531 SN - 978-3-319-15089-5 T2 - Visualization and Processing of Higher Order Descriptors for Multi-Valued Data TI - Visualizing symmetric indefinite 2D tensor fields using The Heat Kernel Signature VL - 40 ER - TY - JOUR AB - We show that incorporating spatial dispersal of individuals into a simple vaccination epidemic model may give rise to a model that exhibits rich dynamical behavior. Using an SIVS (susceptible-infected-vaccinated-susceptible) model as a basis, we describe the spread of an infectious disease in a population split into two regions. In each subpopulation, both forward and backward bifurcations can occur. This implies that for disconnected regions the two-patch system may admit several steady states. We consider traveling between the regions and investigate the impact of spatial dispersal of individuals on the model dynamics. We establish conditions for the existence of multiple nontrivial steady states in the system, and we study the structure of the equilibria. The mathematical analysis reveals an unusually rich dynamical behavior, not normally found in the simple epidemic models. In addition to the disease-free equilibrium, eight endemic equilibria emerge from backward transcritical and saddle-node bifurcation points, forming an interesting bifurcation diagram. Stability of steady states, their bifurcations, and the global dynamics are investigated with analytical tools, numerical simulations, and rigorous set-oriented numerical computations. AU - Knipl, Diána AU - Pilarczyk, Pawel AU - Röst, Gergely ID - 1555 IS - 2 JF - SIAM Journal on Applied Dynamical Systems TI - Rich bifurcation structure in a two patch vaccination model VL - 14 ER - TY - CONF AB - Aiming at the automatic diagnosis of tumors from narrow band imaging (NBI) magnifying endoscopy (ME) images of the stomach, we combine methods from image processing, computational topology, and machine learning to classify patterns into normal, tubular, vessel. Training the algorithm on a small number of images of each type, we achieve a high rate of correct classifications. The analysis of the learning algorithm reveals that a handful of geometric and topological features are responsible for the overwhelming majority of decisions. AU - Dunaeva, Olga AU - Edelsbrunner, Herbert AU - Lukyanov, Anton AU - Machin, Michael AU - Malkova, Daria ID - 1568 T2 - Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing TI - The classification of endoscopy images with persistent homology ER - TY - CONF AB - My personal journey to the fascinating world of geometric forms started more than 30 years ago with the invention of alpha shapes in the plane. It took about 10 years before we generalized the concept to higher dimensions, we produced working software with a graphics interface for the three-dimensional case. At the same time, we added homology to the computations. Needless to say that this foreshadowed the inception of persistent homology, because it suggested the study of filtrations to capture the scale of a shape or data set. Importantly, this method has fast algorithms. The arguably most useful result on persistent homology is the stability of its diagrams under perturbations. AU - Edelsbrunner, Herbert ID - 1567 T2 - 23rd International Symposium TI - Shape, homology, persistence, and stability VL - 9411 ER - TY - JOUR AB - For a given self-map $f$ of $M$, a closed smooth connected and simply-connected manifold of dimension $m\geq 4$, we provide an algorithm for estimating the values of the topological invariant $D^m_r[f]$, which equals the minimal number of $r$-periodic points in the smooth homotopy class of $f$. Our results are based on the combinatorial scheme for computing $D^m_r[f]$ introduced by G. Graff and J. Jezierski [J. Fixed Point Theory Appl. 13 (2013), 63-84]. An open-source implementation of the algorithm programmed in C++ is publicly available at {\tt http://www.pawelpilarczyk.com/combtop/}. AU - Graff, Grzegorz AU - Pilarczyk, Pawel ID - 1563 IS - 1 JF - Topological Methods in Nonlinear Analysis TI - An algorithmic approach to estimating the minimal number of periodic points for smooth self-maps of simply-connected manifolds VL - 45 ER - TY - JOUR AB - We prove that the dual of the digital Voronoi diagram constructed by flooding the plane from the data points gives a geometrically and topologically correct dual triangulation. This provides the proof of correctness for recently developed GPU algorithms that outperform traditional CPU algorithms for constructing two-dimensional Delaunay triangulations. AU - Cao, Thanhtung AU - Edelsbrunner, Herbert AU - Tan, Tiowseng ID - 1578 IS - 7 JF - Computational Geometry TI - Triangulations from topologically correct digital Voronoi diagrams VL - 48 ER - TY - JOUR AB - We investigate weighted straight skeletons from a geometric, graph-theoretical, and combinatorial point of view. We start with a thorough definition and shed light on some ambiguity issues in the procedural definition. We investigate the geometry, combinatorics, and topology of faces and the roof model, and we discuss in which cases a weighted straight skeleton is connected. Finally, we show that the weighted straight skeleton of even a simple polygon may be non-planar and may contain cycles, and we discuss under which restrictions on the weights and/or the input polygon the weighted straight skeleton still behaves similar to its unweighted counterpart. In particular, we obtain a non-procedural description and a linear-time construction algorithm for the straight skeleton of strictly convex polygons with arbitrary weights. AU - Biedl, Therese AU - Held, Martin AU - Huber, Stefan AU - Kaaser, Dominik AU - Palfrader, Peter ID - 1584 IS - 5 JF - Computational Geometry: Theory and Applications TI - Reprint of: Weighted straight skeletons in the plane VL - 48 ER - TY - JOUR AB - We investigate weighted straight skeletons from a geometric, graph-theoretical, and combinatorial point of view. We start with a thorough definition and shed light on some ambiguity issues in the procedural definition. We investigate the geometry, combinatorics, and topology of faces and the roof model, and we discuss in which cases a weighted straight skeleton is connected. Finally, we show that the weighted straight skeleton of even a simple polygon may be non-planar and may contain cycles, and we discuss under which restrictions on the weights and/or the input polygon the weighted straight skeleton still behaves similar to its unweighted counterpart. In particular, we obtain a non-procedural description and a linear-time construction algorithm for the straight skeleton of strictly convex polygons with arbitrary weights. AU - Biedl, Therese AU - Held, Martin AU - Huber, Stefan AU - Kaaser, Dominik AU - Palfrader, Peter ID - 1582 IS - 2 JF - Computational Geometry: Theory and Applications TI - Weighted straight skeletons in the plane VL - 48 ER - TY - JOUR AB - We study the characteristics of straight skeletons of monotone polygonal chains and use them to devise an algorithm for computing positively weighted straight skeletons of monotone polygons. Our algorithm runs in O(nlogn) time and O(n) space, where n denotes the number of vertices of the polygon. AU - Biedl, Therese AU - Held, Martin AU - Huber, Stefan AU - Kaaser, Dominik AU - Palfrader, Peter ID - 1583 IS - 2 JF - Information Processing Letters TI - A simple algorithm for computing positively weighted straight skeletons of monotone polygons VL - 115 ER - TY - CHAP AB - The straight skeleton of a polygon is the geometric graph obtained by tracing the vertices during a mitered offsetting process. It is known that the straight skeleton of a simple polygon is a tree, and one can naturally derive directions on the edges of the tree from the propagation of the shrinking process. In this paper, we ask the reverse question: Given a tree with directed edges, can it be the straight skeleton of a polygon? And if so, can we find a suitable simple polygon? We answer these questions for all directed trees where the order of edges around each node is fixed. AU - Aichholzer, Oswin AU - Biedl, Therese AU - Hackl, Thomas AU - Held, Martin AU - Huber, Stefan AU - Palfrader, Peter AU - Vogtenhuber, Birgit ID - 1590 SN - 978-3-319-27260-3 T2 - Graph Drawing and Network Visualization TI - Representing directed trees as straight skeletons VL - 9411 ER - TY - JOUR AB - We study the problem of robust satisfiability of systems of nonlinear equations, namely, whether for a given continuous function f:K→ ℝn on a finite simplicial complex K and α > 0, it holds that each function g: K → ℝn such that ||g - f || ∞ < α, has a root in K. Via a reduction to the extension problem of maps into a sphere, we particularly show that this problem is decidable in polynomial time for every fixed n, assuming dimK ≤ 2n - 3. This is a substantial extension of previous computational applications of topological degree and related concepts in numerical and interval analysis. Via a reverse reduction, we prove that the problem is undecidable when dim K > 2n - 2, where the threshold comes from the stable range in homotopy theory. For the lucidity of our exposition, we focus on the setting when f is simplexwise linear. Such functions can approximate general continuous functions, and thus we get approximation schemes and undecidability of the robust satisfiability in other possible settings. AU - Franek, Peter AU - Krcál, Marek ID - 1682 IS - 4 JF - Journal of the ACM TI - Robust satisfiability of systems of equations VL - 62 ER - TY - JOUR AB - We consider the hollow on the half-plane {(x, y) : y ≤ 0} ⊂ ℝ2 defined by a function u : (-1, 1) → ℝ, u(x) < 0, and a vertical flow of point particles incident on the hollow. It is assumed that u satisfies the so-called single impact condition (SIC): each incident particle is elastically reflected by graph(u) and goes away without hitting the graph of u anymore. We solve the problem: find the function u minimizing the force of resistance created by the flow. We show that the graph of the minimizer is formed by two arcs of parabolas symmetric to each other with respect to the y-axis. Assuming that the resistance of u ≡ 0 equals 1, we show that the minimal resistance equals π/2 - 2arctan(1/2) ≈ 0.6435. This result completes the previously obtained result [SIAM J. Math. Anal., 46 (2014), pp. 2730-2742] stating in particular that the minimal resistance of a hollow in higher dimensions equals 0.5. We additionally consider a similar problem of minimal resistance, where the hollow in the half-space {(x1,...,xd,y) : y ≤ 0} ⊂ ℝd+1 is defined by a radial function U satisfying the SIC, U(x) = u(|x|), with x = (x1,...,xd), u(ξ) < 0 for 0 ≤ ξ < 1, and u(ξ) = 0 for ξ ≥ 1, and the flow is parallel to the y-axis. The minimal resistance is greater than 0.5 (and coincides with 0.6435 when d = 1) and converges to 0.5 as d → ∞. AU - Akopyan, Arseniy AU - Plakhov, Alexander ID - 1710 IS - 4 JF - Society for Industrial and Applied Mathematics TI - Minimal resistance of curves under the single impact assumption VL - 47 ER - TY - JOUR AB - We construct a non-linear Markov process connected with a biological model of a bacterial genome recombination. The description of invariant measures of this process gives us the solution of one problem in elementary probability theory. AU - Akopyan, Arseniy AU - Pirogov, Sergey AU - Rybko, Aleksandr ID - 1828 IS - 1 JF - Journal of Statistical Physics TI - Invariant measures of genetic recombination process VL - 160 ER - TY - JOUR AB - We numerically investigate the distribution of extrema of 'chaotic' Laplacian eigenfunctions on two-dimensional manifolds. Our contribution is two-fold: (a) we count extrema on grid graphs with a small number of randomly added edges and show the behavior to coincide with the 1957 prediction of Longuet-Higgins for the continuous case and (b) we compute the regularity of their spatial distribution using discrepancy, which is a classical measure from the theory of Monte Carlo integration. The first part suggests that grid graphs with randomly added edges should behave like two-dimensional surfaces with ergodic geodesic flow; in the second part we show that the extrema are more regularly distributed in space than the grid Z2. AU - Pausinger, Florian AU - Steinerberger, Stefan ID - 1938 IS - 6 JF - Physics Letters, Section A TI - On the distribution of local extrema in quantum chaos VL - 379 ER - TY - JOUR AB - Considering a continuous self-map and the induced endomorphism on homology, we study the eigenvalues and eigenspaces of the latter. Taking a filtration of representations, we define the persistence of the eigenspaces, effectively introducing a hierarchical organization of the map. The algorithm that computes this information for a finite sample is proved to be stable, and to give the correct answer for a sufficiently dense sample. Results computed with an implementation of the algorithm provide evidence of its practical utility. AU - Edelsbrunner, Herbert AU - Jablonski, Grzegorz AU - Mrozek, Marian ID - 2035 IS - 5 JF - Foundations of Computational Mathematics TI - The persistent homology of a self-map VL - 15 ER - TY - JOUR AB - We consider the problem of deciding whether the persistent homology group of a simplicial pair (K,L) can be realized as the homology H∗(X) of some complex X with L ⊂ X ⊂ K. We show that this problem is NP-complete even if K is embedded in double-struck R3. As a consequence, we show that it is NP-hard to simplify level and sublevel sets of scalar functions on double-struck S3 within a given tolerance constraint. This problem has relevance to the visualization of medical images by isosurfaces. We also show an implication to the theory of well groups of scalar functions: not every well group can be realized by some level set, and deciding whether a well group can be realized is NP-hard. AU - Attali, Dominique AU - Bauer, Ulrich AU - Devillers, Olivier AU - Glisse, Marc AU - Lieutier, André ID - 1805 IS - 8 JF - Computational Geometry: Theory and Applications TI - Homological reconstruction and simplification in R3 VL - 48 ER - TY - JOUR AB - We present a software platform for reconstructing and analyzing the growth of a plant root system from a time-series of 3D voxelized shapes. It aligns the shapes with each other, constructs a geometric graph representation together with the function that records the time of growth, and organizes the branches into a hierarchy that reflects the order of creation. The software includes the automatic computation of structural and dynamic traits for each root in the system enabling the quantification of growth on fine-scale. These are important advances in plant phenotyping with applications to the study of genetic and environmental influences on growth. AU - Symonova, Olga AU - Topp, Christopher AU - Edelsbrunner, Herbert ID - 1793 IS - 6 JF - PLoS One TI - DynamicRoots: A software platform for the reconstruction and analysis of growing plant roots VL - 10 ER - TY - GEN AU - Symonova, Olga AU - Topp, Christopher AU - Edelsbrunner, Herbert ID - 9737 TI - Root traits computed by DynamicRoots for the maize root shown in fig 2 ER - TY - JOUR AB - Motivated by recent ideas of Harman (Unif. Distrib. Theory, 2010) we develop a new concept of variation of multivariate functions on a compact Hausdorff space with respect to a collection D of subsets. We prove a general version of the Koksma-Hlawka theorem that holds for this notion of variation and discrepancy with respect to D. As special cases, we obtain Koksma-Hlawka inequalities for classical notions, such as extreme or isotropic discrepancy. For extreme discrepancy, our result coincides with the usual Koksma-Hlawka theorem. We show that the space of functions of bounded D-variation contains important discontinuous functions and is closed under natural algebraic operations. Finally, we illustrate the results on concrete integration problems from integral geometry and stereology. AU - Pausinger, Florian AU - Svane, Anne ID - 1792 IS - 6 JF - Journal of Complexity TI - A Koksma-Hlawka inequality for general discrepancy systems VL - 31 ER - TY - THES AB - This thesis is concerned with the computation and approximation of intrinsic volumes. Given a smooth body M and a certain digital approximation of it, we develop algorithms to approximate various intrinsic volumes of M using only measurements taken from its digital approximations. The crucial idea behind our novel algorithms is to link the recent theory of persistent homology to the theory of intrinsic volumes via the Crofton formula from integral geometry and, in particular, via Euler characteristic computations. Our main contributions are a multigrid convergent digital algorithm to compute the first intrinsic volume of a solid body in R^n as well as an appropriate integration pipeline to approximate integral-geometric integrals defined over the Grassmannian manifold. AU - Pausinger, Florian ID - 1399 SN - 2663-337X TI - On the approximation of intrinsic volumes ER - TY - CHAP AB - Saddle periodic orbits are an essential and stable part of the topological skeleton of a 3D vector field. Nevertheless, there is currently no efficient algorithm to robustly extract these features. In this chapter, we present a novel technique to extract saddle periodic orbits. Exploiting the analytic properties of such an orbit, we propose a scalar measure based on the finite-time Lyapunov exponent (FTLE) that indicates its presence. Using persistent homology, we can then extract the robust cycles of this field. These cycles thereby represent the saddle periodic orbits of the given vector field. We discuss the different existing FTLE approximation schemes regarding their applicability to this specific problem and propose an adapted version of FTLE called Normalized Velocity Separation. Finally, we evaluate our method using simple analytic vector field data. AU - Kasten, Jens AU - Reininghaus, Jan AU - Reich, Wieland AU - Scheuermann, Gerik ED - Bremer, Peer-Timo ED - Hotz, Ingrid ED - Pascucci, Valerio ED - Peikert, Ronald ID - 10893 SN - 1612-3786 T2 - Topological Methods in Data Analysis and Visualization III TI - Toward the extraction of saddle periodic orbits VL - 1 ER - TY - JOUR AB - Watermarking techniques for vector graphics dislocate vertices in order to embed imperceptible, yet detectable, statistical features into the input data. The embedding process may result in a change of the topology of the input data, e.g., by introducing self-intersections, which is undesirable or even disastrous for many applications. In this paper we present a watermarking framework for two-dimensional vector graphics that employs conventional watermarking techniques but still provides the guarantee that the topology of the input data is preserved. The geometric part of this framework computes so-called maximum perturbation regions (MPR) of vertices. We propose two efficient algorithms to compute MPRs based on Voronoi diagrams and constrained triangulations. Furthermore, we present two algorithms to conditionally correct the watermarked data in order to increase the watermark embedding capacity and still guarantee topological correctness. While we focus on the watermarking of input formed by straight-line segments, one of our approaches can also be extended to circular arcs. We conclude the paper by demonstrating and analyzing the applicability of our framework in conjunction with two well-known watermarking techniques. AU - Huber, Stefan AU - Held, Martin AU - Meerwald, Peter AU - Kwitt, Roland ID - 1816 IS - 1 JF - International Journal of Computational Geometry and Applications TI - Topology-preserving watermarking of vector graphics VL - 24 ER - TY - JOUR AB - We prove polynomial upper bounds of geometric Ramsey numbers of pathwidth-2 outerplanar triangulations in both convex and general cases. We also prove that the geometric Ramsey numbers of the ladder graph on 2n vertices are bounded by O(n3) and O(n10), in the convex and general case, respectively. We then apply similar methods to prove an (Formula presented.) upper bound on the Ramsey number of a path with n ordered vertices. AU - Cibulka, Josef AU - Gao, Pu AU - Krcál, Marek AU - Valla, Tomáš AU - Valtr, Pavel ID - 1842 IS - 1 JF - Discrete & Computational Geometry TI - On the geometric ramsey number of outerplanar graphs VL - 53 ER - TY - JOUR AB - We study densities of functionals over uniformly bounded triangulations of a Delaunay set of vertices, and prove that the minimum is attained for the Delaunay triangulation if this is the case for finite sets. AU - Dolbilin, Nikolai AU - Edelsbrunner, Herbert AU - Glazyrin, Alexey AU - Musin, Oleg ID - 1876 IS - 3 JF - Moscow Mathematical Journal SN - 16093321 TI - Functionals on triangulations of delaunay sets VL - 14 ER - TY - JOUR AB - We propose an algorithm for the generalization of cartographic objects that can be used to represent maps on different scales. AU - Alexeev, V V AU - Bogaevskaya, V G AU - Preobrazhenskaya, M M AU - Ukhalov, A Y AU - Edelsbrunner, Herbert AU - Yakimova, Olga ID - 1929 IS - 6 JF - Journal of Mathematical Sciences SN - 1072-3374 TI - An algorithm for cartographic generalization that preserves global topology VL - 203 ER - TY - JOUR AB - (Figure Presented) Data acquisition, numerical inaccuracies, and sampling often introduce noise in measurements and simulations. Removing this noise is often necessary for efficient analysis and visualization of this data, yet many denoising techniques change the minima and maxima of a scalar field. For example, the extrema can appear or disappear, spatially move, and change their value. This can lead to wrong interpretations of the data, e.g., when the maximum temperature over an area is falsely reported being a few degrees cooler because the denoising method is unaware of these features. Recently, a topological denoising technique based on a global energy optimization was proposed, which allows the topology-controlled denoising of 2D scalar fields. While this method preserves the minima and maxima, it is constrained by the size of the data. We extend this work to large 2D data and medium-sized 3D data by introducing a novel domain decomposition approach. It allows processing small patches of the domain independently while still avoiding the introduction of new critical points. Furthermore, we propose an iterative refinement of the solution, which decreases the optimization energy compared to the previous approach and therefore gives smoother results that are closer to the input. We illustrate our technique on synthetic and real-world 2D and 3D data sets that highlight potential applications. AU - Günther, David AU - Jacobson, Alec AU - Reininghaus, Jan AU - Seidel, Hans AU - Sorkine Hornung, Olga AU - Weinkauf, Tino ID - 1930 IS - 12 JF - IEEE Transactions on Visualization and Computer Graphics TI - Fast and memory-efficient topological denoising of 2D and 3D scalar fields VL - 20 ER - TY - CONF AB - Persistent homology is a popular and powerful tool for capturing topological features of data. Advances in algorithms for computing persistent homology have reduced the computation time drastically – as long as the algorithm does not exhaust the available memory. Following up on a recently presented parallel method for persistence computation on shared memory systems [1], we demonstrate that a simple adaption of the standard reduction algorithm leads to a variant for distributed systems. Our algorithmic design ensures that the data is distributed over the nodes without redundancy; this permits the computation of much larger instances than on a single machine. Moreover, we observe that the parallelism at least compensates for the overhead caused by communication between nodes, and often even speeds up the computation compared to sequential and even parallel shared memory algorithms. In our experiments, we were able to compute the persistent homology of filtrations with more than a billion (109) elements within seconds on a cluster with 32 nodes using less than 6GB of memory per node. AU - Bauer, Ulrich AU - Kerber, Michael AU - Reininghaus, Jan ED - McGeoch, Catherine ED - Meyer, Ulrich ID - 2043 T2 - Proceedings of the Workshop on Algorithm Engineering and Experiments TI - Distributed computation of persistent homology ER - TY - CHAP AB - We present a parallel algorithm for computing the persistent homology of a filtered chain complex. Our approach differs from the commonly used reduction algorithm by first computing persistence pairs within local chunks, then simplifying the unpaired columns, and finally applying standard reduction on the simplified matrix. The approach generalizes a technique by Günther et al., which uses discrete Morse Theory to compute persistence; we derive the same worst-case complexity bound in a more general context. The algorithm employs several practical optimization techniques, which are of independent interest. Our sequential implementation of the algorithm is competitive with state-of-the-art methods, and we further improve the performance through parallel computation. AU - Bauer, Ulrich AU - Kerber, Michael AU - Reininghaus, Jan ED - Bremer, Peer-Timo ED - Hotz, Ingrid ED - Pascucci, Valerio ED - Peikert, Ronald ID - 2044 T2 - Topological Methods in Data Analysis and Visualization III TI - Clear and Compress: Computing Persistent Homology in Chunks ER - TY - CONF AB - We define a simple, explicit map sending a morphism f : M → N of pointwise finite dimensional persistence modules to a matching between the barcodes of M and N. Our main result is that, in a precise sense, the quality of this matching is tightly controlled by the lengths of the longest intervals in the barcodes of ker f and coker f . As an immediate corollary, we obtain a new proof of the algebraic stability theorem for persistence barcodes [5, 9], a fundamental result in the theory of persistent homology. In contrast to previous proofs, ours shows explicitly how a δ-interleaving morphism between two persistence modules induces a δ-matching between the barcodes of the two modules. Our main result also specializes to a structure theorem for submodules and quotients of persistence modules. Copyright is held by the owner/author(s). AU - Bauer, Ulrich AU - Lesnick, Michael ID - 2153 T2 - Proceedings of the Annual Symposium on Computational Geometry TI - Induced matchings of barcodes and the algebraic stability of persistence ER - TY - CONF AB - We propose a metric for Reeb graphs, called the functional distortion distance. Under this distance, the Reeb graph is stable against small changes of input functions. At the same time, it remains discriminative at differentiating input functions. In particular, the main result is that the functional distortion distance between two Reeb graphs is bounded from below by the bottleneck distance between both the ordinary and extended persistence diagrams for appropriate dimensions. As an application of our results, we analyze a natural simplification scheme for Reeb graphs, and show that persistent features in Reeb graph remains persistent under simplification. Understanding the stability of important features of the Reeb graph under simplification is an interesting problem on its own right, and critical to the practical usage of Reeb graphs. Copyright is held by the owner/author(s). AU - Bauer, Ulrich AU - Ge, Xiaoyin AU - Wang, Yusu ID - 2156 T2 - Proceedings of the Annual Symposium on Computational Geometry TI - Measuring distance between Reeb graphs ER - TY - CONF AB - Given a finite set of points in Rn and a positive radius, we study the Čech, Delaunay-Čech, alpha, and wrap complexes as instances of a generalized discrete Morse theory. We prove that the latter three complexes are simple-homotopy equivalent. Our results have applications in topological data analysis and in the reconstruction of shapes from sampled data. Copyright is held by the owner/author(s). AU - Bauer, Ulrich AU - Edelsbrunner, Herbert ID - 2155 T2 - Proceedings of the Annual Symposium on Computational Geometry TI - The morse theory of Čech and Delaunay filtrations ER - TY - CONF AB - We give evidence for the difficulty of computing Betti numbers of simplicial complexes over a finite field. We do this by reducing the rank computation for sparse matrices with to non-zero entries to computing Betti numbers of simplicial complexes consisting of at most a constant times to simplices. Together with the known reduction in the other direction, this implies that the two problems have the same computational complexity. AU - Edelsbrunner, Herbert AU - Parsa, Salman ID - 2177 T2 - Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms TI - On the computational complexity of betti numbers reductions from matrix rank ER - TY - JOUR AB - Given topological spaces X,Y, a fundamental problem of algebraic topology is understanding the structure of all continuous maps X→ Y. We consider a computational version, where X,Y are given as finite simplicial complexes, and the goal is to compute [X,Y], that is, all homotopy classes of suchmaps.We solve this problem in the stable range, where for some d ≥ 2, we have dim X ≤ 2d-2 and Y is (d-1)-connected; in particular, Y can be the d-dimensional sphere Sd. The algorithm combines classical tools and ideas from homotopy theory (obstruction theory, Postnikov systems, and simplicial sets) with algorithmic tools from effective algebraic topology (locally effective simplicial sets and objects with effective homology). In contrast, [X,Y] is known to be uncomputable for general X,Y, since for X = S1 it includes a well known undecidable problem: testing triviality of the fundamental group of Y. In follow-up papers, the algorithm is shown to run in polynomial time for d fixed, and extended to other problems, such as the extension problem, where we are given a subspace A ⊂ X and a map A→ Y and ask whether it extends to a map X → Y, or computing the Z2-index-everything in the stable range. Outside the stable range, the extension problem is undecidable. AU - Čadek, Martin AU - Krcál, Marek AU - Matoušek, Jiří AU - Sergeraert, Francis AU - Vokřínek, Lukáš AU - Wagner, Uli ID - 2184 IS - 3 JF - Journal of the ACM TI - Computing all maps into a sphere VL - 61 ER - TY - CONF AB - Persistent homology is a recent grandchild of homology that has found use in science and engineering as well as in mathematics. This paper surveys the method as well as the applications, neglecting completeness in favor of highlighting ideas and directions. AU - Edelsbrunner, Herbert AU - Morozovy, Dmitriy ID - 2905 TI - Persistent homology: Theory and practice ER - TY - CONF AB - In this paper, we introduce planar matchings on directed pseudo-line arrangements, which yield a planar set of pseudo-line segments such that only matching-partners are adjacent. By translating the planar matching problem into a corresponding stable roommates problem we show that such matchings always exist. Using our new framework, we establish, for the first time, a complete, rigorous definition of weighted straight skeletons, which are based on a so-called wavefront propagation process. We present a generalized and unified approach to treat structural changes in the wavefront that focuses on the restoration of weak planarity by finding planar matchings. AU - Biedl, Therese AU - Huber, Stefan AU - Palfrader, Peter ID - 10892 SN - 0302-9743 T2 - 25th International Symposium, ISAAC 2014 TI - Planar matchings for weighted straight skeletons VL - 8889 ER - TY - BOOK AB - This monograph presents a short course in computational geometry and topology. In the first part the book covers Voronoi diagrams and Delaunay triangulations, then it presents the theory of alpha complexes which play a crucial role in biology. The central part of the book is the homology theory and their computation, including the theory of persistence which is indispensable for applications, e.g. shape reconstruction. The target audience comprises researchers and practitioners in mathematics, biology, neuroscience and computer science, but the book may also be beneficial to graduate students of these fields. AU - Edelsbrunner, Herbert ID - 6853 SN - 2191-530X TI - A Short Course in Computational Geometry and Topology ER - TY - CONF AB - We propose a method for visualizing two-dimensional symmetric positive definite tensor fields using the Heat Kernel Signature (HKS). The HKS is derived from the heat kernel and was originally introduced as an isometry invariant shape signature. Each positive definite tensor field defines a Riemannian manifold by considering the tensor field as a Riemannian metric. On this Riemmanian manifold we can apply the definition of the HKS. The resulting scalar quantity is used for the visualization of tensor fields. The HKS is closely related to the Gaussian curvature of the Riemannian manifold and the time parameter of the heat kernel allows a multiscale analysis in a natural way. In this way, the HKS represents field related scale space properties, enabling a level of detail analysis of tensor fields. This makes the HKS an interesting new scalar quantity for tensor fields, which differs significantly from usual tensor invariants like the trace or the determinant. A method for visualization and a numerical realization of the HKS for tensor fields is proposed in this chapter. To validate the approach we apply it to some illustrating simple examples as isolated critical points and to a medical diffusion tensor data set. AU - Zobel, Valentin AU - Reininghaus, Jan AU - Hotz, Ingrid ID - 10886 SN - 1612-3786 T2 - Topological Methods in Data Analysis and Visualization III TI - Visualization of two-dimensional symmetric positive definite tensor fields using the heat kernel signature ER - TY - CHAP AB - The Morse-Smale complex can be either explicitly or implicitly represented. Depending on the type of representation, the simplification of the Morse-Smale complex works differently. In the explicit representation, the Morse-Smale complex is directly simplified by explicitly reconnecting the critical points during the simplification. In the implicit representation, on the other hand, the Morse-Smale complex is given by a combinatorial gradient field. In this setting, the simplification changes the combinatorial flow, which yields an indirect simplification of the Morse-Smale complex. The topological complexity of the Morse-Smale complex is reduced in both representations. However, the simplifications generally yield different results. In this chapter, we emphasize properties of the two representations that cause these differences. We also provide a complexity analysis of the two schemes with respect to running time and memory consumption. AU - Günther, David AU - Reininghaus, Jan AU - Seidel, Hans-Peter AU - Weinkauf, Tino ED - Bremer, Peer-Timo ED - Hotz, Ingrid ED - Pascucci, Valerio ED - Peikert, Ronald ID - 10817 SN - 1612-3786 T2 - Topological Methods in Data Analysis and Visualization III. TI - Notes on the simplification of the Morse-Smale complex ER - TY - JOUR AB - Motivated by applications in biology, we present an algorithm for estimating the length of tube-like shapes in 3-dimensional Euclidean space. In a first step, we combine the tube formula of Weyl with integral geometric methods to obtain an integral representation of the length, which we approximate using a variant of the Koksma-Hlawka Theorem. In a second step, we use tools from computational topology to decrease the dependence on small perturbations of the shape. We present computational experiments that shed light on the stability and the convergence rate of our algorithm. AU - Edelsbrunner, Herbert AU - Pausinger, Florian ID - 2255 IS - 1 JF - Journal of Mathematical Imaging and Vision SN - 09249907 TI - Stable length estimates of tube-like shapes VL - 50 ER - TY - CONF AB - PHAT is a C++ library for the computation of persistent homology by matrix reduction. We aim for a simple generic design that decouples algorithms from data structures without sacrificing efficiency or user-friendliness. This makes PHAT a versatile platform for experimenting with algorithmic ideas and comparing them to state of the art implementations. AU - Bauer, Ulrich AU - Kerber, Michael AU - Reininghaus, Jan AU - Wagner, Hubert ID - 10894 SN - 0302-9743 T2 - ICMS 2014: International Congress on Mathematical Software TI - PHAT – Persistent Homology Algorithms Toolbox VL - 8592 ER - TY - GEN AB - The classical sphere packing problem asks for the best (infinite) arrangement of non-overlapping unit balls which cover as much space as possible. We define a generalized version of the problem, where we allow each ball a limited amount of overlap with other balls. We study two natural choices of overlap measures and obtain the optimal lattice packings in a parameterized family of lattices which contains the FCC, BCC, and integer lattice. AU - Iglesias Ham, Mabel AU - Kerber, Michael AU - Uhler, Caroline ID - 2012 T2 - arXiv TI - Sphere packing with limited overlap ER - TY - CONF AB - A straight skeleton is a well-known geometric structure, and several algorithms exist to construct the straight skeleton for a given polygon or planar straight-line graph. In this paper, we ask the reverse question: Given the straight skeleton (in form of a planar straight-line graph, with some rays to infinity), can we reconstruct a planar straight-line graph for which this was the straight skeleton? We show how to reduce this problem to the problem of finding a line that intersects a set of convex polygons. We can find these convex polygons and all such lines in $O(nlog n)$ time in the Real RAM computer model, where $n$ denotes the number of edges of the input graph. We also explain how our approach can be used for recognizing Voronoi diagrams of points, thereby completing a partial solution provided by Ash and Bolker in 1985. AU - Biedl, Therese AU - Held, Martin AU - Huber, Stefan ID - 2209 TI - Recognizing straight skeletons and Voronoi diagrams and reconstructing their input ER - TY - CONF AB - A straight skeleton is a well-known geometric structure, and several algorithms exist to construct the straight skeleton for a given polygon. In this paper, we ask the reverse question: Given the straight skeleton (in form of a tree with a drawing in the plane, but with the exact position of the leaves unspecified), can we reconstruct the polygon? We show that in most cases there exists at most one polygon; in the remaining case there is an infinite number of polygons determined by one angle that can range in an interval. We can find this (set of) polygon(s) in linear time in the Real RAM computer model. AU - Biedl, Therese AU - Held, Martin AU - Huber, Stefan ID - 2210 T2 - 29th European Workshop on Computational Geometry TI - Reconstructing polygons from embedded straight skeletons ER - TY - JOUR AB - This extended abstract is concerned with the irregularities of distribution of one-dimensional permuted van der Corput sequences that are generated from linear permutations. We show how to obtain upper bounds for the discrepancy and diaphony of these sequences, by relating them to Kronecker sequences and applying earlier results of Faure and Niederreiter. AU - Pausinger, Florian ID - 2304 JF - Electronic Notes in Discrete Mathematics TI - Van der Corput sequences and linear permutations VL - 43 ER - TY - CONF AB - We consider several basic problems of algebraic topology, with connections to combinatorial and geometric questions, from the point of view of computational complexity. The extension problem asks, given topological spaces X; Y , a subspace A ⊆ X, and a (continuous) map f : A → Y , whether f can be extended to a map X → Y . For computational purposes, we assume that X and Y are represented as finite simplicial complexes, A is a subcomplex of X, and f is given as a simplicial map. In this generality the problem is undecidable, as follows from Novikov's result from the 1950s on uncomputability of the fundamental group π1(Y ). We thus study the problem under the assumption that, for some k ≥ 2, Y is (k - 1)-connected; informally, this means that Y has \no holes up to dimension k-1" (a basic example of such a Y is the sphere Sk). We prove that, on the one hand, this problem is still undecidable for dimX = 2k. On the other hand, for every fixed k ≥ 2, we obtain an algorithm that solves the extension problem in polynomial time assuming Y (k - 1)-connected and dimX ≤ 2k - 1. For dimX ≤ 2k - 2, the algorithm also provides a classification of all extensions up to homotopy (continuous deformation). This relies on results of our SODA 2012 paper, and the main new ingredient is a machinery of objects with polynomial-time homology, which is a polynomial-time analog of objects with effective homology developed earlier by Sergeraert et al. We also consider the computation of the higher homotopy groups πk(Y ), k ≥ 2, for a 1-connected Y . Their computability was established by Brown in 1957; we show that πk(Y ) can be computed in polynomial time for every fixed k ≥ 2. On the other hand, Anick proved in 1989 that computing πk(Y ) is #P-hard if k is a part of input, where Y is a cell complex with certain rather compact encoding. We strengthen his result to #P-hardness for Y given as a simplicial complex. AU - Čadek, Martin AU - Krcál, Marek AU - Matoušek, Jiří AU - Vokřínek, Lukáš AU - Wagner, Uli ID - 2807 T2 - 45th Annual ACM Symposium on theory of computing TI - Extending continuous maps: Polynomiality and undecidability ER - TY - CONF AB - We consider the problem of deciding whether the persistent homology group of a simplicial pair (K, L) can be realized as the homology H* (X) of some complex X with L ⊂ X ⊂ K. We show that this problem is NP-complete even if K is embedded in ℝ3. As a consequence, we show that it is NP-hard to simplify level and sublevel sets of scalar functions on S3 within a given tolerance constraint. This problem has relevance to the visualization of medical images by isosurfaces. We also show an implication to the theory of well groups of scalar functions: not every well group can be realized by some level set, and deciding whether a well group can be realized is NP-hard. AU - Attali, Dominique AU - Bauer, Ulrich AU - Devillers, Olivier AU - Glisse, Marc AU - Lieutier, André ID - 2812 T2 - Proceedings of the 29th annual symposium on Computational Geometry TI - Homological reconstruction and simplification in R3 ER - TY - JOUR AB - Identification of genes that control root system architecture in crop plants requires innovations that enable high-throughput and accurate measurements of root system architecture through time. We demonstrate the ability of a semiautomated 3D in vivo imaging and digital phenotyping pipeline to interrogate the quantitative genetic basis of root system growth in a rice biparental mapping population, Bala x Azucena. We phenotyped >1,400 3D root models and >57,000 2D images for a suite of 25 traits that quantified the distribution, shape, extent of exploration, and the intrinsic size of root networks at days 12, 14, and 16 of growth in a gellan gum medium. From these data we identified 89 quantitative trait loci, some of which correspond to those found previously in soil-grown plants, and provide evidence for genetic tradeoffs in root growth allocations, such as between the extent and thoroughness of exploration. We also developed a multivariate method for generating and mapping central root architecture phenotypes and used it to identify five major quantitative trait loci (r2 = 24-37%), two of which were not identified by our univariate analysis. Our imaging and analytical platform provides a means to identify genes with high potential for improving root traits and agronomic qualities of crops. AU - Topp, Christopher AU - Iyer Pascuzzi, Anjali AU - Anderson, Jill AU - Lee, Cheng AU - Zurek, Paul AU - Symonova, Olga AU - Zheng, Ying AU - Bucksch, Alexander AU - Mileyko, Yuriy AU - Galkovskyi, Taras AU - Moore, Brad AU - Harer, John AU - Edelsbrunner, Herbert AU - Mitchell Olds, Thomas AU - Weitz, Joshua AU - Benfey, Philip ID - 2822 IS - 18 JF - PNAS TI - 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture VL - 110 ER - TY - CONF AB - Mathematical objects can be measured unambiguously, but not so objects from our physical world. Even the total length of tubelike shapes has its difficulties. We introduce a combination of geometric, probabilistic, and topological methods to design a stable length estimate for tube-like shapes; that is: one that is insensitive to small shape changes. AU - Edelsbrunner, Herbert AU - Pausinger, Florian ID - 2843 T2 - 17th IAPR International Conference on Discrete Geometry for Computer Imagery TI - Stable length estimates of tube-like shapes VL - 7749 ER - TY - JOUR AB - Given a continuous function f:X-R on a topological space, we consider the preimages of intervals and their homology groups and show how to read the ranks of these groups from the extended persistence diagram of f. In addition, we quantify the robustness of the homology classes under perturbations of f using well groups, and we show how to read the ranks of these groups from the same extended persistence diagram. The special case X=R3 has ramifications in the fields of medical imaging and scientific visualization. AU - Bendich, Paul AU - Edelsbrunner, Herbert AU - Morozov, Dmitriy AU - Patel, Amit ID - 2859 IS - 1 JF - Homology, Homotopy and Applications TI - Homology and robustness of level and interlevel sets VL - 15 ER - TY - JOUR AB - Root system growth and development is highly plastic and is influenced by the surrounding environment. Roots frequently grow in heterogeneous environments that include interactions from neighboring plants and physical impediments in the rhizosphere. To investigate how planting density and physical objects affect root system growth, we grew rice in a transparent gel system in close proximity with another plant or a physical object. Root systems were imaged and reconstructed in three dimensions. Root-root interaction strength was calculated using quantitative metrics that characterize the extent towhich the reconstructed root systems overlap each other. Surprisingly, we found the overlap of root systems of the same genotype was significantly higher than that of root systems of different genotypes. Root systems of the same genotype tended to grow toward each other but those of different genotypes appeared to avoid each other. Shoot separation experiments excluded the possibility of aerial interactions, suggesting root communication. Staggered plantings indicated that interactions likely occur at root tips in close proximity. Recognition of obstacles also occurred through root tips, but through physical contact in a size-dependent manner. These results indicate that root systems use two different forms of communication to recognize objects and alter root architecture: root-root recognition, possibly mediated through root exudates, and root-object recognition mediated by physical contact at the root tips. This finding suggests that root tips act as local sensors that integrate rhizosphere information into global root architectural changes. AU - Fang, Suqin AU - Clark, Randy AU - Zheng, Ying AU - Iyer Pascuzzi, Anjali AU - Weitz, Joshua AU - Kochian, Leon AU - Edelsbrunner, Herbert AU - Liao, Hong AU - Benfey, Philip ID - 2887 IS - 7 JF - PNAS TI - Genotypic recognition and spatial responses by rice roots VL - 110 ER - TY - CONF AB - We introduce the M-modes problem for graphical models: predicting the M label configurations of highest probability that are at the same time local maxima of the probability landscape. M-modes have multiple possible applications: because they are intrinsically diverse, they provide a principled alternative to non-maximum suppression techniques for structured prediction, they can act as codebook vectors for quantizing the configuration space, or they can form component centers for mixture model approximation. We present two algorithms for solving the M-modes problem. The first algorithm solves the problem in polynomial time when the underlying graphical model is a simple chain. The second algorithm solves the problem for junction chains. In synthetic and real dataset, we demonstrate how M-modes can improve the performance of prediction. We also use the generated modes as a tool to understand the topography of the probability distribution of configurations, for example with relation to the training set size and amount of noise in the data. AU - Chen, Chao AU - Kolmogorov, Vladimir AU - Yan, Zhu AU - Metaxas, Dimitris AU - Lampert, Christoph ID - 2901 TI - Computing the M most probable modes of a graphical model VL - 31 ER - TY - CONF AB - Motivated by an application in cell biology, we describe an extension of the kinetic data structures framework from Delaunay triangulations to fixed-radius alpha complexes. Our algorithm is implemented using CGAL, following the exact geometric computation paradigm. We report on several techniques to accelerate the computation that turn our implementation applicable to the underlying biological problem. AU - Kerber, Michael AU - Edelsbrunner, Herbert ID - 2906 T2 - 2013 Proceedings of the 15th Workshop on Algorithm Engineering and Experiments TI - 3D kinetic alpha complexes and their implementation ER - TY - JOUR AB - The fact that a sum of isotropic Gaussian kernels can have more modes than kernels is surprising. Extra (ghost) modes do not exist in ℝ1 and are generally not well studied in higher dimensions. We study a configuration of n+1 Gaussian kernels for which there are exactly n+2 modes. We show that all modes lie on a finite set of lines, which we call axes, and study the restriction of the Gaussian mixture to these axes in order to discover that there are an exponential number of critical points in this configuration. Although the existence of ghost modes remained unknown due to the difficulty of finding examples in ℝ2, we show that the resilience of ghost modes grows like the square root of the dimension. In addition, we exhibit finite configurations of isotropic Gaussian kernels with superlinearly many modes. AU - Edelsbrunner, Herbert AU - Fasy, Brittany Terese AU - Rote, Günter ID - 2815 IS - 4 JF - Discrete & Computational Geometry SN - 0179-5376 TI - Add isotropic Gaussian kernels at own risk: More and more resilient modes in higher dimensions VL - 49 ER - TY - JOUR AB - In this paper, we present the first output-sensitive algorithm to compute the persistence diagram of a filtered simplicial complex. For any Γ > 0, it returns only those homology classes with persistence at least Γ. Instead of the classical reduction via column operations, our algorithm performs rank computations on submatrices of the boundary matrix. For an arbitrary constant δ ∈ (0, 1), the running time is O (C (1 - δ) Γ R d (n) log n), where C (1 - δ) Γ is the number of homology classes with persistence at least (1 - δ) Γ, n is the total number of simplices in the complex, d its dimension, and R d (n) is the complexity of computing the rank of an n × n matrix with O (d n) nonzero entries. Depending on the choice of the rank algorithm, this yields a deterministic O (C (1 - δ) Γ n 2.376) algorithm, an O (C (1 - δ) Γ n 2.28) Las-Vegas algorithm, or an O (C (1 - δ) Γ n 2 + ε{lunate}) Monte-Carlo algorithm for an arbitrary ε{lunate} > 0. The space complexity of the Monte-Carlo version is bounded by O (d n) = O (n log n). AU - Chen, Chao AU - Kerber, Michael ID - 2939 IS - 4 JF - Computational Geometry: Theory and Applications TI - An output sensitive algorithm for persistent homology VL - 46 ER - TY - CONF AB - Taking images is an efficient way to collect data about the physical world. It can be done fast and in exquisite detail. By definition, image processing is the field that concerns itself with the computation aimed at harnessing the information contained in images [10]. This talk is concerned with topological information. Our main thesis is that persistent homology [5] is a useful method to quantify and summarize topological information, building a bridge that connects algebraic topology with applications. We provide supporting evidence for this thesis by touching upon four technical developments in the overlap between persistent homology and image processing. AU - Edelsbrunner, Herbert ID - 10897 SN - 0302-9743 T2 - Graph-Based Representations in Pattern Recognition TI - Persistent homology in image processing VL - 7877 ER - TY - JOUR AU - Edelsbrunner, Herbert AU - Strelkova, Nataliya ID - 2849 IS - 6 JF - Russian Mathematical Surveys TI - On the configuration space of Steiner minimal trees VL - 67 ER - TY - CONF AB - In order to enjoy a digital version of the Jordan Curve Theorem, it is common to use the closed topology for the foreground and the open topology for the background of a 2-dimensional binary image. In this paper, we introduce a single topology that enjoys this theorem for all thresholds decomposing a real-valued image into foreground and background. This topology is easy to construct and it generalizes to n-dimensional images. AU - Edelsbrunner, Herbert AU - Symonova, Olga ID - 2903 TI - The adaptive topology of a digital image ER - TY - JOUR AU - Dolbilin, Nikolai AU - Edelsbrunner, Herbert AU - Musin, Oleg ID - 2941 IS - 4 JF - Russian Mathematical Surveys TI - On the optimality of functionals over triangulations of Delaunay sets VL - 67 ER - TY - CONF AB - We study the task of interactive semantic labeling of a segmentation hierarchy. To this end we propose a framework interleaving two components: an automatic labeling step, based on a Conditional Random Field whose dependencies are defined by the inclusion tree of the segmentation hierarchy, and an interaction step that integrates incremental input from a human user. Evaluated on two distinct datasets, the proposed interactive approach efficiently integrates human interventions and illustrates the advantages of structured prediction in an interactive framework. AU - Zankl, Georg AU - Haxhimusa, Yll AU - Ion, Adrian ID - 2971 TI - Interactive labeling of image segmentation hierarchies VL - 7476 ER - TY - JOUR AB - We introduce a strategy based on Kustin-Miller unprojection that allows us to construct many hundreds of Gorenstein codimension 4 ideals with 9 × 16 resolutions (that is, nine equations and sixteen first syzygies). Our two basic games are called Tom and Jerry; the main application is the biregular construction of most of the anticanonically polarised Mori Fano 3-folds of Altinok's thesis. There are 115 cases whose numerical data (in effect, the Hilbert series) allow a Type I projection. In every case, at least one Tom and one Jerry construction works, providing at least two deformation families of quasismooth Fano 3-folds having the same numerics but different topology. © 2012 Copyright Foundation Compositio Mathematica. AU - Brown, Gavin AU - Kerber, Michael AU - Reid, Miles ID - 3120 IS - 4 JF - Compositio Mathematica TI - Fano 3 folds in codimension 4 Tom and Jerry Part I VL - 148 ER - TY - CONF AB - This note contributes to the point calculus of persistent homology by extending Alexander duality from spaces to real-valued functions. Given a perfect Morse function f: S n+1 →[0, 1 and a decomposition S n+1 = U ∪ V into two (n + 1)-manifolds with common boundary M, we prove elementary relationships between the persistence diagrams of f restricted to U, to V, and to M. AU - Edelsbrunner, Herbert AU - Kerber, Michael ID - 3133 T2 - Proceedings of the twenty-eighth annual symposium on Computational geometry TI - Alexander duality for functions: The persistent behavior of land and water and shore ER - TY - CONF AB - It has been an open question whether the sum of finitely many isotropic Gaussian kernels in n ≥ 2 dimensions can have more modes than kernels, until in 2003 Carreira-Perpiñán and Williams exhibited n +1 isotropic Gaussian kernels in ℝ n with n + 2 modes. We give a detailed analysis of this example, showing that it has exponentially many critical points and that the resilience of the extra mode grows like √n. In addition, we exhibit finite configurations of isotropic Gaussian kernels with superlinearly many modes. AU - Edelsbrunner, Herbert AU - Fasy, Brittany AU - Rote, Günter ID - 3134 T2 - Proceedings of the twenty-eighth annual symposium on Computational geometry TI - Add isotropic Gaussian kernels at own risk: More and more resilient modes in higher dimensions ER - TY - JOUR AB - We use a distortion to define the dual complex of a cubical subdivision of ℝ n as an n-dimensional subcomplex of the nerve of the set of n-cubes. Motivated by the topological analysis of high-dimensional digital image data, we consider such subdivisions defined by generalizations of quad- and oct-trees to n dimensions. Assuming the subdivision is balanced, we show that mapping each vertex to the center of the corresponding n-cube gives a geometric realization of the dual complex in ℝ n. AU - Edelsbrunner, Herbert AU - Kerber, Michael ID - 3256 IS - 2 JF - Discrete & Computational Geometry TI - Dual complexes of cubical subdivisions of ℝn VL - 47 ER - TY - CONF AB - We propose a mid-level statistical model for image segmentation that composes multiple figure-ground hypotheses (FG) obtained by applying constraints at different locations and scales, into larger interpretations (tilings) of the entire image. Inference is cast as optimization over sets of maximal cliques sampled from a graph connecting all non-overlapping figure-ground segment hypotheses. Potential functions over cliques combine unary, Gestalt-based figure qualities, and pairwise compatibilities among spatially neighboring segments, constrained by T-junctions and the boundary interface statistics of real scenes. Learning the model parameters is based on maximum likelihood, alternating between sampling image tilings and optimizing their potential function parameters. State of the art results are reported on the Berkeley and Stanford segmentation datasets, as well as VOC2009, where a 28% improvement was achieved. AU - Ion, Adrian AU - Carreira, Joao AU - Sminchisescu, Cristian ID - 3265 TI - Image segmentation by figure-ground composition into maximal cliques ER - TY - JOUR AB - We consider the offset-deconstruction problem: Given a polygonal shape Q with n vertices, can it be expressed, up to a tolerance ε in Hausdorff distance, as the Minkowski sum of another polygonal shape P with a disk of fixed radius? If it does, we also seek a preferably simple-looking solution P; then, P's offset constitutes an accurate, vertex-reduced, and smoothened approximation of Q. We give an O(nlogn)-time exact decision algorithm that handles any polygonal shape, assuming the real-RAM model of computation. A variant of the algorithm, which we have implemented using the cgal library, is based on rational arithmetic and answers the same deconstruction problem up to an uncertainty parameter δ its running time additionally depends on δ. If the input shape is found to be approximable, this algorithm also computes an approximate solution for the problem. It also allows us to solve parameter-optimization problems induced by the offset-deconstruction problem. For convex shapes, the complexity of the exact decision algorithm drops to O(n), which is also the time required to compute a solution P with at most one more vertex than a vertex-minimal one. AU - Berberich, Eric AU - Halperin, Dan AU - Kerber, Michael AU - Pogalnikova, Roza ID - 3115 IS - 4 JF - Discrete & Computational Geometry TI - Deconstructing approximate offsets VL - 48 ER - TY - JOUR AB - Computing the topology of an algebraic plane curve C means computing a combinatorial graph that is isotopic to C and thus represents its topology in R2. We prove that, for a polynomial of degree n with integer coefficients bounded by 2ρ, the topology of the induced curve can be computed with bit operations ( indicates that we omit logarithmic factors). Our analysis improves the previous best known complexity bounds by a factor of n2. The improvement is based on new techniques to compute and refine isolating intervals for the real roots of polynomials, and on the consequent amortized analysis of the critical fibers of the algebraic curve. AU - Kerber, Michael AU - Sagraloff, Michael ID - 3331 IS - 3 JF - Journal of Symbolic Computation TI - A worst case bound for topology computation of algebraic curves VL - 47 ER - TY - CONF AB - Let K be a simplicial complex and g the rank of its p-th homology group Hp(K) defined with ℤ2 coefficients. We show that we can compute a basis H of Hp(K) and annotate each p-simplex of K with a binary vector of length g with the following property: the annotations, summed over all p-simplices in any p-cycle z, provide the coordinate vector of the homology class [z] in the basis H. The basis and the annotations for all simplices can be computed in O(n ω ) time, where n is the size of K and ω < 2.376 is a quantity so that two n×n matrices can be multiplied in O(n ω ) time. The precomputed annotations permit answering queries about the independence or the triviality of p-cycles efficiently. Using annotations of edges in 2-complexes, we derive better algorithms for computing optimal basis and optimal homologous cycles in 1 - dimensional homology. Specifically, for computing an optimal basis of H1(K) , we improve the previously known time complexity from O(n 4) to O(n ω  + n 2 g ω − 1). Here n denotes the size of the 2-skeleton of K and g the rank of H1(K) . Computing an optimal cycle homologous to a given 1-cycle is NP-hard even for surfaces and an algorithm taking 2 O(g) nlogn time is known for surfaces. We extend this algorithm to work with arbitrary 2-complexes in O(n ω ) + 2 O(g) n 2logn time using annotations. AU - Busaryev, Oleksiy AU - Cabello, Sergio AU - Chen, Chao AU - Dey, Tamal AU - Wang, Yusu ID - 3129 TI - Annotating simplices with a homology basis and its applications VL - 7357 ER - TY - JOUR AB - The structure of hierarchical networks in biological and physical systems has long been characterized using the Horton-Strahler ordering scheme. The scheme assigns an integer order to each edge in the network based on the topology of branching such that the order increases from distal parts of the network (e.g., mountain streams or capillaries) to the "root" of the network (e.g., the river outlet or the aorta). However, Horton-Strahler ordering cannot be applied to networks with loops because they they create a contradiction in the edge ordering in terms of which edge precedes another in the hierarchy. Here, we present a generalization of the Horton-Strahler order to weighted planar reticular networks, where weights are assumed to correlate with the importance of network edges, e.g., weights estimated from edge widths may correlate to flow capacity. Our method assigns hierarchical levels not only to edges of the network, but also to its loops, and classifies the edges into reticular edges, which are responsible for loop formation, and tree edges. In addition, we perform a detailed and rigorous theoretical analysis of the sensitivity of the hierarchical levels to weight perturbations. In doing so, we show that the ordering of the reticular edges is more robust to noise in weight estimation than is the ordering of the tree edges. We discuss applications of this generalized Horton-Strahler ordering to the study of leaf venation and other biological networks. AU - Mileyko, Yuriy AU - Edelsbrunner, Herbert AU - Price, Charles AU - Weitz, Joshua ID - 3159 IS - 6 JF - PLoS One TI - Hierarchical ordering of reticular networks VL - 7 ER - TY - JOUR AB - The theory of persistent homology opens up the possibility to reason about topological features of a space or a function quantitatively and in combinatorial terms. We refer to this new angle at a classical subject within algebraic topology as a point calculus, which we present for the family of interlevel sets of a real-valued function. Our account of the subject is expository, devoid of proofs, and written for non-experts in algebraic topology. AU - Bendich, Paul AU - Cabello, Sergio AU - Edelsbrunner, Herbert ID - 3310 IS - 11 JF - Pattern Recognition Letters TI - A point calculus for interlevel set homology VL - 33 ER - TY - JOUR AB - First we note that the best polynomial approximation to vertical bar x vertical bar on the set, which consists of an interval on the positive half-axis and a point on the negative half-axis, can be given by means of the classical Chebyshev polynomials. Then we explore the cases when a solution of the related problem on two intervals can be given in elementary functions. AU - Pausinger, Florian ID - 6588 IS - 1 JF - Journal of Mathematical Physics, Analysis, Geometry SN - 1812-9471 TI - Elementary solutions of the Bernstein problem on two intervals VL - 8 ER - TY - JOUR AU - Edelsbrunner, Herbert AU - Strelkova, Nataliya ID - 2912 IS - 6 JF - Russian Mathematical Surveys TI - On the configuration space for the shortest networks VL - 67 ER - TY - CONF AB - When searching for characteristic subpatterns in potentially noisy graph data, it appears self-evident that having multiple observations would be better than having just one. However, it turns out that the inconsistencies introduced when different graph instances have different edge sets pose a serious challenge. In this work we address this challenge for the problem of finding maximum weighted cliques. We introduce the concept of most persistent soft-clique. This is subset of vertices, that 1) is almost fully or at least densely connected, 2) occurs in all or almost all graph instances, and 3) has the maximum weight. We present a measure of clique-ness, that essentially counts the number of edge missing to make a subset of vertices into a clique. With this measure, we show that the problem of finding the most persistent soft-clique problem can be cast either as: a) a max-min two person game optimization problem, or b) a min-min soft margin optimization problem. Both formulations lead to the same solution when using a partial Lagrangian method to solve the optimization problems. By experiments on synthetic data and on real social network data, we show that the proposed method is able to reliably find soft cliques in graph data, even if that is distorted by random noise or unreliable observations. AU - Quadrianto, Novi AU - Lampert, Christoph AU - Chen, Chao ID - 3127 T2 - Proceedings of the 29th International Conference on Machine Learning TI - The most persistent soft-clique in a set of sampled graphs ER - TY - JOUR AB - Generalized van der Corput sequences are onedimensional, infinite sequences in the unit interval. They are generated from permutations in integer base b and are the building blocks of the multi-dimensional Halton sequences. Motivated by recent progress of Atanassov on the uniform distribution behavior of Halton sequences, we study, among others, permutations of the form P(i) = ai (mod b) for coprime integers a and b. We show that multipliers a that either divide b - 1 or b + 1 generate van der Corput sequences with weak distribution properties. We give explicit lower bounds for the asymptotic distribution behavior of these sequences and relate them to sequences generated from the identity permutation in smaller bases, which are, due to Faure, the weakest distributed generalized van der Corput sequences. AU - Pausinger, Florian ID - 2904 IS - 3 JF - Journal de Theorie des Nombres des Bordeaux SN - 1246-7405 TI - Weak multipliers for generalized van der Corput sequences VL - 24 ER - TY - JOUR AB - We present an algorithm for simplifying linear cartographic objects and results obtained with a computer program implementing this algorithm. AU - Edelsbrunner, Herbert AU - Musin, Oleg AU - Ukhalov, Alexey AU - Yakimova, Olga AU - Alexeev, Vladislav AU - Bogaevskaya, Victoriya AU - Gorohov, Andrey AU - Preobrazhenskaya, Margarita ID - 2902 IS - 6 JF - Modeling and Analysis of Information Systems TI - Fractal and computational geometry for generalizing cartographic objects VL - 19 ER - TY - CONF AB - We present a joint image segmentation and labeling model (JSL) which, given a bag of figure-ground segment hypotheses extracted at multiple image locations and scales, constructs a joint probability distribution over both the compatible image interpretations (tilings or image segmentations) composed from those segments, and over their labeling into categories. The process of drawing samples from the joint distribution can be interpreted as first sampling tilings, modeled as maximal cliques, from a graph connecting spatially non-overlapping segments in the bag [1], followed by sampling labels for those segments, conditioned on the choice of a particular tiling. We learn the segmentation and labeling parameters jointly, based on Maximum Likelihood with a novel Incremental Saddle Point estimation procedure. The partition function over tilings and labelings is increasingly more accurately approximated by including incorrect configurations that a not-yet-competent model rates probable during learning. We show that the proposed methodologymatches the current state of the art in the Stanford dataset [2], as well as in VOC2010, where 41.7% accuracy on the test set is achieved. AU - Ion, Adrian AU - Carreira, Joao AU - Sminchisescu, Cristian ID - 3266 T2 - NIPS Proceedings TI - Probabilistic joint image segmentation and labeling VL - 24 ER - TY - JOUR AB - The unintentional scattering of light between neighboring surfaces in complex projection environments increases the brightness and decreases the contrast, disrupting the appearance of the desired imagery. To achieve satisfactory projection results, the inverse problem of global illumination must be solved to cancel this secondary scattering. In this paper, we propose a global illumination cancellation method that minimizes the perceptual difference between the desired imagery and the actual total illumination in the resulting physical environment. Using Gauss-Newton and active set methods, we design a fast solver for the bound constrained nonlinear least squares problem raised by the perceptual error metrics. Our solver is further accelerated with a CUDA implementation and multi-resolution method to achieve 1–2 fps for problems with approximately 3000 variables. We demonstrate the global illumination cancellation algorithm with our multi-projector system. Results show that our method preserves the color fidelity of the desired imagery significantly better than previous methods. AU - Sheng, Yu AU - Cutler, Barbara AU - Chen, Chao AU - Nasman, Joshua ID - 3269 IS - 4 JF - Computer Graphics Forum TI - Perceptual global illumination cancellation in complex projection environments VL - 30 ER - TY - JOUR AB - We address the problem of localizing homology classes, namely, finding the cycle representing a given class with the most concise geometric measure. We study the problem with different measures: volume, diameter and radius. For volume, that is, the 1-norm of a cycle, two main results are presented. First, we prove that the problem is NP-hard to approximate within any constant factor. Second, we prove that for homology of dimension two or higher, the problem is NP-hard to approximate even when the Betti number is O(1). The latter result leads to the inapproximability of the problem of computing the nonbounding cycle with the smallest volume and computing cycles representing a homology basis with the minimal total volume. As for the other two measures defined by pairwise geodesic distance, diameter and radius, we show that the localization problem is NP-hard for diameter but is polynomial for radius. Our work is restricted to homology over the ℤ2 field. AU - Chen, Chao AU - Freedman, Daniel ID - 3267 IS - 3 JF - Discrete & Computational Geometry TI - Hardness results for homology localization VL - 45 ER - TY - CHAP AB - We study the topology of the Megaparsec Cosmic Web in terms of the scale-dependent Betti numbers, which formalize the topological information content of the cosmic mass distribution. While the Betti numbers do not fully quantify topology, they extend the information beyond conventional cosmological studies of topology in terms of genus and Euler characteristic. The richer information content of Betti numbers goes along the availability of fast algorithms to compute them. For continuous density fields, we determine the scale-dependence of Betti numbers by invoking the cosmologically familiar filtration of sublevel or superlevel sets defined by density thresholds. For the discrete galaxy distribution, however, the analysis is based on the alpha shapes of the particles. These simplicial complexes constitute an ordered sequence of nested subsets of the Delaunay tessellation, a filtration defined by the scale parameter, α. As they are homotopy equivalent to the sublevel sets of the distance field, they are an excellent tool for assessing the topological structure of a discrete point distribution. In order to develop an intuitive understanding for the behavior of Betti numbers as a function of α, and their relation to the morphological patterns in the Cosmic Web, we first study them within the context of simple heuristic Voronoi clustering models. These can be tuned to consist of specific morphological elements of the Cosmic Web, i.e. clusters, filaments, or sheets. To elucidate the relative prominence of the various Betti numbers in different stages of morphological evolution, we introduce the concept of alpha tracks. Subsequently, we address the topology of structures emerging in the standard LCDM scenario and in cosmological scenarios with alternative dark energy content. The evolution of the Betti numbers is shown to reflect the hierarchical evolution of the Cosmic Web. We also demonstrate that the scale-dependence of the Betti numbers yields a promising measure of cosmological parameters, with a potential to help in determining the nature of dark energy and to probe primordial non-Gaussianities. We also discuss the expected Betti numbers as a function of the density threshold for superlevel sets of a Gaussian random field. Finally, we introduce the concept of persistent homology. It measures scale levels of the mass distribution and allows us to separate small from large scale features. Within the context of the hierarchical cosmic structure formation, persistence provides a natural formalism for a multiscale topology study of the Cosmic Web. AU - Van De Weygaert, Rien AU - Vegter, Gert AU - Edelsbrunner, Herbert AU - Jones, Bernard AU - Pranav, Pratyush AU - Park, Changbom AU - Hellwing, Wojciech AU - Eldering, Bob AU - Kruithof, Nico AU - Bos, Patrick AU - Hidding, Johan AU - Feldbrugge, Job AU - Ten Have, Eline AU - Van Engelen, Matti AU - Caroli, Manuel AU - Teillaud, Monique ED - Gavrilova, Marina ED - Tan, Kenneth ED - Mostafavi, Mir ID - 3335 T2 - Transactions on Computational Science XIV TI - Alpha, Betti and the Megaparsec Universe: On the topology of the Cosmic Web VL - 6970 ER - TY - CONF AB - We consider the offset-deconstruction problem: Given a polygonal shape Q with n vertices, can it be expressed, up to a tolerance µ in Hausdorff distance, as the Minkowski sum of another polygonal shape P with a disk of fixed radius? If it does, we also seek a preferably simple-looking solution shape P; then, P's offset constitutes an accurate, vertex-reduced, and smoothened approximation of Q. We give an O(n log n)-time exact decision algorithm that handles any polygonal shape, assuming the real-RAM model of computation. An alternative algorithm, based purely on rational arithmetic, answers the same deconstruction problem, up to an uncertainty parameter, and its running time depends on the parameter δ (in addition to the other input parameters: n, δ and the radius of the disk). If the input shape is found to be approximable, the rational-arithmetic algorithm also computes an approximate solution shape for the problem. For convex shapes, the complexity of the exact decision algorithm drops to O(n), which is also the time required to compute a solution shape P with at most one more vertex than a vertex-minimal one. Our study is motivated by applications from two different domains. However, since the offset operation has numerous uses, we anticipate that the reverse question that we study here will be still more broadly applicable. We present results obtained with our implementation of the rational-arithmetic algorithm. AU - Berberich, Eric AU - Halperin, Dan AU - Kerber, Michael AU - Pogalnikova, Roza ID - 3329 T2 - Proceedings of the twenty-seventh annual symposium on Computational geometry TI - Deconstructing approximate offsets ER - TY - JOUR AB - Given an algebraic hypersurface O in ℝd, how many simplices are necessary for a simplicial complex isotopic to O? We address this problem and the variant where all vertices of the complex must lie on O. We give asymptotically tight worst-case bounds for algebraic plane curves. Our results gradually improve known bounds in higher dimensions; however, the question for tight bounds remains unsolved for d ≥ 3. AU - Kerber, Michael AU - Sagraloff, Michael ID - 3332 IS - 3 JF - Graphs and Combinatorics TI - A note on the complexity of real algebraic hypersurfaces VL - 27 ER - TY - CONF AB - We consider the problem of approximating all real roots of a square-free polynomial f. Given isolating intervals, our algorithm refines each of them to a width at most 2-L, that is, each of the roots is approximated to L bits after the binary point. Our method provides a certified answer for arbitrary real polynomials, only requiring finite approximations of the polynomial coefficient and choosing a suitable working precision adaptively. In this way, we get a correct algorithm that is simple to implement and practically efficient. Our algorithm uses the quadratic interval refinement method; we adapt that method to be able to cope with inaccuracies when evaluating f, without sacrificing its quadratic convergence behavior. We prove a bound on the bit complexity of our algorithm in terms of degree, coefficient size and discriminant. Our bound improves previous work on integer polynomials by a factor of deg f and essentially matches best known theoretical bounds on root approximation which are obtained by very sophisticated algorithms. AU - Kerber, Michael AU - Sagraloff, Michael ID - 3330 TI - Root refinement for real polynomials ER - TY - CONF AB - We report on a generic uni- and bivariate algebraic kernel that is publicly available with CGAL 3.7. It comprises complete, correct, though efficient state-of-the-art implementations on polynomials, roots of polynomial systems, and the support to analyze algebraic curves defined by bivariate polynomials. The kernel design is generic, that is, various number types and substeps can be exchanged. It is accompanied with a ready-to-use interface to enable arrangements induced by algebraic curves, that have already been used as basis for various geometric applications, as arrangements on Dupin cyclides or the triangulation of algebraic surfaces. We present two novel applications: arrangements of rotated algebraic curves and Boolean set operations on polygons bounded by segments of algebraic curves. We also provide experiments showing that our general implementation is competitive and even often clearly outperforms existing implementations that are explicitly tailored for specific types of non-linear curves that are available in CGAL. AU - Berberich, Eric AU - Hemmer, Michael AU - Kerber, Michael ID - 3328 TI - A generic algebraic kernel for non linear geometric applications ER - TY - JOUR AU - Edelsbrunner, Herbert AU - Pach, János AU - Ziegler, Günter ID - 3334 IS - 1 JF - Discrete & Computational Geometry TI - Letter from the new editors-in-chief VL - 45 ER - TY - CONF AB - In this paper, we present the first output-sensitive algorithm to compute the persistence diagram of a filtered simplicial complex. For any Γ>0, it returns only those homology classes with persistence at least Γ. Instead of the classical reduction via column operations, our algorithm performs rank computations on submatrices of the boundary matrix. For an arbitrary constant δ ∈ (0,1), the running time is O(C(1-δ)ΓR(n)log n), where C(1-δ)Γ is the number of homology classes with persistence at least (1-δ)Γ, n is the total number of simplices, and R(n) is the complexity of computing the rank of an n x n matrix with O(n) nonzero entries. Depending on the choice of the rank algorithm, this yields a deterministic O(C(1-δ)Γn2.376) algorithm, a O(C(1-δ)Γn2.28) Las-Vegas algorithm, or a O(C(1-δ)Γn2+ε) Monte-Carlo algorithm for an arbitrary ε>0. AU - Chen, Chao AU - Kerber, Michael ID - 3367 TI - An output sensitive algorithm for persistent homology ER - TY - JOUR AB - We bound the difference in length of two curves in terms of their total curvatures and the Fréchet distance. The bound is independent of the dimension of the ambient Euclidean space, it improves upon a bound by Cohen-Steiner and Edelsbrunner, and it generalizes a result by Fáry and Chakerian. AU - Fasy, Brittany Terese ID - 3781 IS - 1-2 JF - Acta Sci. Math. (Szeged) TI - The difference in length of curves in R^n VL - 77 ER -