TY - JOUR
AB - We study the probabilistic convergence between the mapper graph and the Reeb graph of a topological space X equipped with a continuous function f:X→R. We first give a categorification of the mapper graph and the Reeb graph by interpreting them in terms of cosheaves and stratified covers of the real line R. We then introduce a variant of the classic mapper graph of Singh et al. (in: Eurographics symposium on point-based graphics, 2007), referred to as the enhanced mapper graph, and demonstrate that such a construction approximates the Reeb graph of (X,f) when it is applied to points randomly sampled from a probability density function concentrated on (X,f). Our techniques are based on the interleaving distance of constructible cosheaves and topological estimation via kernel density estimates. Following Munch and Wang (In: 32nd international symposium on computational geometry, volume 51 of Leibniz international proceedings in informatics (LIPIcs), Dagstuhl, Germany, pp 53:1–53:16, 2016), we first show that the mapper graph of (X,f), a constructible R-space (with a fixed open cover), approximates the Reeb graph of the same space. We then construct an isomorphism between the mapper of (X,f) to the mapper of a super-level set of a probability density function concentrated on (X,f). Finally, building on the approach of Bobrowski et al. (Bernoulli 23(1):288–328, 2017b), we show that, with high probability, we can recover the mapper of the super-level set given a sufficiently large sample. Our work is the first to consider the mapper construction using the theory of cosheaves in a probabilistic setting. It is part of an ongoing effort to combine sheaf theory, probability, and statistics, to support topological data analysis with random data.
AU - Brown, Adam
AU - Bobrowski, Omer
AU - Munch, Elizabeth
AU - Wang, Bei
ID - 9111
IS - 1
JF - Journal of Applied and Computational Topology
SN - 2367-1726
TI - Probabilistic convergence and stability of random mapper graphs
VL - 5
ER -
TY - CONF
AB - In March 2020, the Austrian government introduced a widespread lock-down in response to the COVID-19 pandemic. Based on subjective impressions and anecdotal evidence, Austrian public and private life came to a sudden halt. Here we assess the effect of the lock-down quantitatively for all regions in Austria and present an analysis of daily changes of human mobility throughout Austria using near-real-time anonymized mobile phone data. We describe an efficient data aggregation pipeline and analyze the mobility by quantifying mobile-phone traffic at specific point of interests (POIs), analyzing individual trajectories and investigating the cluster structure of the origin-destination graph. We found a reduction of commuters at Viennese metro stations of over 80% and the number of devices with a radius of gyration of less than 500 m almost doubled. The results of studying crowd-movement behavior highlight considerable changes in the structure of mobility networks, revealed by a higher modularity and an increase from 12 to 20 detected communities. We demonstrate the relevance of mobility data for epidemiological studies by showing a significant correlation of the outflow from the town of Ischgl (an early COVID-19 hotspot) and the reported COVID-19 cases with an 8-day time lag. This research indicates that mobile phone usage data permits the moment-by-moment quantification of mobility behavior for a whole country. We emphasize the need to improve the availability of such data in anonymized form to empower rapid response to combat COVID-19 and future pandemics.
AU - Heiler, Georg
AU - Reisch, Tobias
AU - Hurt, Jan
AU - Forghani, Mohammad
AU - Omani, Aida
AU - Hanbury, Allan
AU - Karimipour, Farid
ID - 9253
SN - 9781728162515
T2 - 2020 IEEE International Conference on Big Data
TI - Country-wide mobility changes observed using mobile phone data during COVID-19 pandemic
ER -
TY - JOUR
AU - Adams, Henry
AU - Kourimska, Hana
AU - Heiss, Teresa
AU - Percival, Sarah
AU - Ziegelmeier, Lori
ID - 10071
IS - 9
JF - Notices of the American Mathematical Society
SN - 0002-9920
TI - How to tutorial-a-thon
VL - 68
ER -
TY - CONF
AB - How information is created, shared and consumed has changed rapidly in recent decades, in part thanks to new social platforms and technologies on the web. With ever-larger amounts of unstructured and limited labels, organizing and reconciling information from different sources and modalities is a central challenge in machine learning. This cutting-edge tutorial aims to introduce the multimodal entailment task, which can be useful for detecting semantic alignments when a single modality alone does not suffice for a whole content understanding. Starting with a brief overview of natural language processing, computer vision, structured data and neural graph learning, we lay the foundations for the multimodal sections to follow. We then discuss recent multimodal learning literature covering visual, audio and language streams, and explore case studies focusing on tasks which require fine-grained understanding of visual and linguistic semantics question answering, veracity and hatred classification. Finally, we introduce a new dataset for recognizing multimodal entailment, exploring it in a hands-on collaborative section. Overall, this tutorial gives an overview of multimodal learning, introduces a multimodal entailment dataset, and encourages future research in the topic.
AU - Ilharco, Cesar
AU - Shirazi, Afsaneh
AU - Gopalan, Arjun
AU - Nagrani, Arsha
AU - Bratanič, Blaž
AU - Bregler, Chris
AU - Liu, Christina
AU - Ferreira, Felipe
AU - Barcik, Gabriek
AU - Ilharco, Gabriel
AU - Osang, Georg F
AU - Bulian, Jannis
AU - Frank, Jared
AU - Smaira, Lucas
AU - Cao, Qin
AU - Marino, Ricardo
AU - Patel, Roma
AU - Leung, Thomas
AU - Imbrasaite, Vaiva
ID - 10367
SN - 9-781-9540-8557-2
T2 - 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Tutorial Abstracts
TI - Recognizing multimodal entailment
ER -
TY - JOUR
AB - Given a locally finite X⊆Rd and a radius r≥0, the k-fold cover of X and r consists of all points in Rd that have k or more points of X within distance r. We consider two filtrations—one in scale obtained by fixing k and increasing r, and the other in depth obtained by fixing r and decreasing k—and we compute the persistence diagrams of both. While standard methods suffice for the filtration in scale, we need novel geometric and topological concepts for the filtration in depth. In particular, we introduce a rhomboid tiling in Rd+1 whose horizontal integer slices are the order-k Delaunay mosaics of X, and construct a zigzag module of Delaunay mosaics that is isomorphic to the persistence module of the multi-covers.
AU - Edelsbrunner, Herbert
AU - Osang, Georg F
ID - 9317
JF - Discrete and Computational Geometry
SN - 0179-5376
TI - The multi-cover persistence of Euclidean balls
VL - 65
ER -
TY - CONF
AB - Modeling a crystal as a periodic point set, we present a fingerprint consisting of density functionsthat facilitates the efficient search for new materials and material properties. We prove invarianceunder isometries, continuity, and completeness in the generic case, which are necessary featuresfor the reliable comparison of crystals. The proof of continuity integrates methods from discretegeometry and lattice theory, while the proof of generic completeness combines techniques fromgeometry with analysis. The fingerprint has a fast algorithm based on Brillouin zones and relatedinclusion-exclusion formulae. We have implemented the algorithm and describe its application tocrystal structure prediction.
AU - Edelsbrunner, Herbert
AU - Heiss, Teresa
AU - Kurlin , Vitaliy
AU - Smith, Philip
AU - Wintraecken, Mathijs
ID - 9345
SN - 1868-8969
T2 - 37th International Symposium on Computational Geometry (SoCG 2021)
TI - The density fingerprint of a periodic point set
VL - 189
ER -
TY - CONF
AB - Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codimension, i.e. submanifolds of ℝ^d defined as the zero set of some multivariate multivalued smooth function f: ℝ^d → ℝ^{d-n}, where n is the intrinsic dimension of the manifold. A natural way to approximate a smooth isomanifold M is to consider its Piecewise-Linear (PL) approximation M̂ based on a triangulation 𝒯 of the ambient space ℝ^d. In this paper, we describe a simple algorithm to trace isomanifolds from a given starting point. The algorithm works for arbitrary dimensions n and d, and any precision D. Our main result is that, when f (or M) has bounded complexity, the complexity of the algorithm is polynomial in d and δ = 1/D (and unavoidably exponential in n). Since it is known that for δ = Ω (d^{2.5}), M̂ is O(D²)-close and isotopic to M, our algorithm produces a faithful PL-approximation of isomanifolds of bounded complexity in time polynomial in d. Combining this algorithm with dimensionality reduction techniques, the dependency on d in the size of M̂ can be completely removed with high probability. We also show that the algorithm can handle isomanifolds with boundary and, more generally, isostratifolds. The algorithm for isomanifolds with boundary has been implemented and experimental results are reported, showing that it is practical and can handle cases that are far ahead of the state-of-the-art.
AU - Boissonnat, Jean-Daniel
AU - Kachanovich, Siargey
AU - Wintraecken, Mathijs
ID - 9441
SN - 1868-8969
T2 - 37th International Symposium on Computational Geometry (SoCG 2021)
TI - Tracing isomanifolds in Rd in time polynomial in d using Coxeter-Freudenthal-Kuhn triangulations
VL - 189
ER -
TY - JOUR
AB - An ordered graph is a graph with a linear ordering on its vertex set. We prove that for every positive integer k, there exists a constant ck > 0 such that any ordered graph G on n vertices with the property that neither G nor its complement contains an induced monotone path of size k, has either a clique or an independent set of size at least n^ck . This strengthens a result of Bousquet, Lagoutte, and Thomassé, who proved the analogous result for unordered graphs.
A key idea of the above paper was to show that any unordered graph on n vertices that does not contain an induced path of size k, and whose maximum degree is at most c(k)n for some small c(k) > 0, contains two disjoint linear size subsets with no edge between them. This approach fails for ordered graphs, because the analogous statement is false for k ≥ 3, by a construction of Fox. We provide some further examples showing that this statement also fails for ordered graphs avoiding other ordered trees.
AU - Pach, János
AU - Tomon, István
ID - 9602
JF - Journal of Combinatorial Theory. Series B
SN - 0095-8956
TI - Erdős-Hajnal-type results for monotone paths
VL - 151
ER -
TY - CONF
AB - Generalizing Lee’s inductive argument for counting the cells of higher order Voronoi tessellations in ℝ² to ℝ³, we get precise relations in terms of Morse theoretic quantities for piecewise constant functions on planar arrangements. Specifically, we prove that for a generic set of n ≥ 5 points in ℝ³, the number of regions in the order-k Voronoi tessellation is N_{k-1} - binom(k,2)n + n, for 1 ≤ k ≤ n-1, in which N_{k-1} is the sum of Euler characteristics of these function’s first k-1 sublevel sets. We get similar expressions for the vertices, edges, and polygons of the order-k Voronoi tessellation.
AU - Biswas, Ranita
AU - Cultrera di Montesano, Sebastiano
AU - Edelsbrunner, Herbert
AU - Saghafian, Morteza
ID - 9604
SN - 18688969
T2 - Leibniz International Proceedings in Informatics
TI - Counting cells of order-k voronoi tessellations in ℝ^{3} with morse theory
VL - 189
ER -
TY - CONF
AB - Given a finite set A ⊂ ℝ^d, let Cov_{r,k} denote the set of all points within distance r to at least k points of A. Allowing r and k to vary, we obtain a 2-parameter family of spaces that grow larger when r increases or k decreases, called the multicover bifiltration. Motivated by the problem of computing the homology of this bifiltration, we introduce two closely related combinatorial bifiltrations, one polyhedral and the other simplicial, which are both topologically equivalent to the multicover bifiltration and far smaller than a Čech-based model considered in prior work of Sheehy. Our polyhedral construction is a bifiltration of the rhomboid tiling of Edelsbrunner and Osang, and can be efficiently computed using a variant of an algorithm given by these authors as well. Using an implementation for dimension 2 and 3, we provide experimental results. Our simplicial construction is useful for understanding the polyhedral construction and proving its correctness.
AU - Corbet, René
AU - Kerber, Michael
AU - Lesnick, Michael
AU - Osang, Georg F
ID - 9605
SN - 18688969
T2 - Leibniz International Proceedings in Informatics
TI - Computing the multicover bifiltration
VL - 189
ER -
TY - JOUR
AB - Heart rate variability (hrv) is a physiological phenomenon of the variation in the length of the time interval between consecutive heartbeats. In many cases it could be an indicator of the development of pathological states. The classical approach to the analysis of hrv includes time domain methods and frequency domain methods. However, attempts are still being made to define new and more effective hrv assessment tools. Persistent homology is a novel data analysis tool developed in the recent decades that is rooted at algebraic topology. The Topological Data Analysis (TDA) approach focuses on examining the shape of the data in terms of connectedness and holes, and has recently proved to be very effective in various fields of research. In this paper we propose the use of persistent homology to the hrv analysis. We recall selected topological descriptors used in the literature and we introduce some new topological descriptors that reflect the specificity of hrv, and we discuss their relation to the standard hrv measures. In particular, we show that this novel approach provides a collection of indices that might be at least as useful as the classical parameters in differentiating between series of beat-to-beat intervals (RR-intervals) in healthy subjects and patients suffering from a stroke episode.
AU - Graff, Grzegorz
AU - Graff, Beata
AU - Pilarczyk, Pawel
AU - Jablonski, Grzegorz
AU - Gąsecki, Dariusz
AU - Narkiewicz, Krzysztof
ID - 9821
IS - 7
JF - PLoS ONE
TI - Persistent homology as a new method of the assessment of heart rate variability
VL - 16
ER -
TY - JOUR
AB - Given a locally finite set 𝑋⊆ℝ𝑑 and an integer 𝑘≥0, we consider the function 𝐰𝑘:Del𝑘(𝑋)→ℝ on the dual of the order-k Voronoi tessellation, whose sublevel sets generalize the notion of alpha shapes from order-1 to order-k (Edelsbrunner et al. in IEEE Trans Inf Theory IT-29:551–559, 1983; Krasnoshchekov and Polishchuk in Inf Process Lett 114:76–83, 2014). While this function is not necessarily generalized discrete Morse, in the sense of Forman (Adv Math 134:90–145, 1998) and Freij (Discrete Math 309:3821–3829, 2009), we prove that it satisfies similar properties so that its increments can be meaningfully classified into critical and non-critical steps. This result extends to the case of weighted points and sheds light on k-fold covers with balls in Euclidean space.
AU - Edelsbrunner, Herbert
AU - Nikitenko, Anton
AU - Osang, Georg F
ID - 9465
IS - 1
JF - Journal of Geometry
SN - 00472468
TI - A step in the Delaunay mosaic of order k
VL - 112
ER -
TY - CONF
AB - We define a new compact coordinate system in which each integer triplet addresses a voxel in the BCC grid, and we investigate some of its properties. We propose a characterization of 3D discrete analytical planes with their topological features (in the Cartesian and in the new coordinate system) such as the interrelation between the thickness of the plane and the separability constraint we aim to obtain.
AU - Čomić, Lidija
AU - Zrour, Rita
AU - Largeteau-Skapin, Gaëlle
AU - Biswas, Ranita
AU - Andres, Eric
ID - 9824
SN - 03029743
T2 - Discrete Geometry and Mathematical Morphology
TI - Body centered cubic grid - coordinate system and discrete analytical plane definition
VL - 12708
ER -
TY - JOUR
AB - Two common representations of close packings of identical spheres consisting of hexagonal layers, called Barlow stackings, appear abundantly in minerals and metals. These motifs, however, occupy an identical portion of space and bear identical first-order topological signatures as measured by persistent homology. Here we present a novel method based on k-fold covers that unambiguously distinguishes between these patterns. Moreover, our approach provides topological evidence that the FCC motif is the more stable of the two in the context of evolving experimental sphere packings during the transition from disordered to an ordered state. We conclude that our approach can be generalised to distinguish between various Barlow stackings manifested in minerals and metals.
AU - Osang, Georg F
AU - Edelsbrunner, Herbert
AU - Saadatfar, Mohammad
ID - 10204
IS - 40
JF - Soft Matter
SN - 1744-683X
TI - Topological signatures and stability of hexagonal close packing and Barlow stackings
VL - 17
ER -
TY - JOUR
AB - Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codimension, i.e. manifolds defined as the zero set of some multivariate vector-valued smooth function f : Rd → Rd−n. A natural (and efficient) way to approximate an isomanifold is to consider its Piecewise-Linear (PL) approximation based on a triangulation T of the ambient space Rd. In this paper, we give conditions under which the PL-approximation of an isomanifold is topologically equivalent to the isomanifold. The conditions are easy to satisfy in the sense that they can always be met by taking a sufficiently
fine triangulation T . This contrasts with previous results on the triangulation of manifolds where, in arbitrary dimensions, delicate perturbations are needed to guarantee topological correctness, which leads to strong limitations in practice. We further give a bound on the Fréchet distance between the original isomanifold and its PL-approximation. Finally we show analogous results for the PL-approximation of an isomanifold with boundary.
AU - Boissonnat, Jean-Daniel
AU - Wintraecken, Mathijs
ID - 9649
JF - Foundations of Computational Mathematics
TI - The topological correctness of PL approximations of isomanifolds
ER -
TY - CONF
AB - matching is compatible to two or more labeled point sets of size n with labels {1,…,n} if its straight-line drawing on each of these point sets is crossing-free. We study the maximum number of edges in a matching compatible to two or more labeled point sets in general position in the plane. We show that for any two labeled convex sets of n points there exists a compatible matching with ⌊2n−−√⌋ edges. More generally, for any ℓ labeled point sets we construct compatible matchings of size Ω(n1/ℓ) . As a corresponding upper bound, we use probabilistic arguments to show that for any ℓ given sets of n points there exists a labeling of each set such that the largest compatible matching has O(n2/(ℓ+1)) edges. Finally, we show that Θ(logn) copies of any set of n points are necessary and sufficient for the existence of a labeling such that any compatible matching consists only of a single edge.
AU - Aichholzer, Oswin
AU - Arroyo Guevara, Alan M
AU - Masárová, Zuzana
AU - Parada, Irene
AU - Perz, Daniel
AU - Pilz, Alexander
AU - Tkadlec, Josef
AU - Vogtenhuber, Birgit
ID - 9296
SN - 03029743
T2 - 15th International Conference on Algorithms and Computation
TI - On compatible matchings
VL - 12635
ER -
TY - JOUR
AB - Consider a random set of points on the unit sphere in ℝd, which can be either uniformly sampled or a Poisson point process. Its convex hull is a random inscribed polytope, whose boundary approximates the sphere. We focus on the case d = 3, for which there are elementary proofs and fascinating formulas for metric properties. In particular, we study the fraction of acute facets, the expected intrinsic volumes, the total edge length, and the distance to a fixed point. Finally we generalize the results to the ellipsoid with homeoid density.
AU - Akopyan, Arseniy
AU - Edelsbrunner, Herbert
AU - Nikitenko, Anton
ID - 10222
JF - Experimental Mathematics
SN - 1058-6458
TI - The beauty of random polytopes inscribed in the 2-sphere
ER -
TY - JOUR
AB - Extending a result of Milena Radnovic and Serge Tabachnikov, we establish conditionsfor two different non-symmetric norms to define the same billiard reflection law.
AU - Akopyan, Arseniy
AU - Karasev, Roman
ID - 7791
JF - European Journal of Mathematics
SN - 2199-675X
TI - When different norms lead to same billiard trajectories?
ER -
TY - JOUR
AB - We investigate a sheaf-theoretic interpretation of stratification learning from geometric and topological perspectives. Our main result is the construction of stratification learning algorithms framed in terms of a sheaf on a partially ordered set with the Alexandroff topology. We prove that the resulting decomposition is the unique minimal stratification for which the strata are homogeneous and the given sheaf is constructible. In particular, when we choose to work with the local homology sheaf, our algorithm gives an alternative to the local homology transfer algorithm given in Bendich et al. (Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1355–1370, ACM, New York, 2012), and the cohomology stratification algorithm given in Nanda (Found. Comput. Math. 20(2), 195–222, 2020). Additionally, we give examples of stratifications based on the geometric techniques of Breiding et al. (Rev. Mat. Complut. 31(3), 545–593, 2018), illustrating how the sheaf-theoretic approach can be used to study stratifications from both topological and geometric perspectives. This approach also points toward future applications of sheaf theory in the study of topological data analysis by illustrating the utility of the language of sheaf theory in generalizing existing algorithms.
AU - Brown, Adam
AU - Wang, Bei
ID - 7905
JF - Discrete and Computational Geometry
SN - 0179-5376
TI - Sheaf-theoretic stratification learning from geometric and topological perspectives
VL - 65
ER -
TY - THES
AB - This thesis considers two examples of reconfiguration problems: flipping edges in edge-labelled triangulations of planar point sets and swapping labelled tokens placed on vertices of a graph. In both cases the studied structures – all the triangulations of a given point set or all token placements on a given graph – can be thought of as vertices of the so-called reconfiguration graph, in which two vertices are adjacent if the corresponding structures differ by a single elementary operation – by a flip of a diagonal in a triangulation or by a swap of tokens on adjacent vertices, respectively. We study the reconfiguration of one instance of a structure into another via (shortest) paths in the reconfiguration graph.
For triangulations of point sets in which each edge has a unique label and a flip transfers the label from the removed edge to the new edge, we prove a polynomial-time testable condition, called the Orbit Theorem, that characterizes when two triangulations of the same point set lie in the same connected component of the reconfiguration graph. The condition was first conjectured by Bose, Lubiw, Pathak and Verdonschot. We additionally provide a polynomial time algorithm that computes a reconfiguring flip sequence, if it exists. Our proof of the Orbit Theorem uses topological properties of a certain high-dimensional cell complex that has the usual reconfiguration graph as its 1-skeleton.
In the context of token swapping on a tree graph, we make partial progress on the problem of finding shortest reconfiguration sequences. We disprove the so-called Happy Leaf Conjecture and demonstrate the importance of swapping tokens that are already placed at the correct vertices. We also prove that a generalization of the problem to weighted coloured token swapping is NP-hard on trees but solvable in polynomial time on paths and stars.
AU - Masárová, Zuzana
ID - 7944
KW - reconfiguration
KW - reconfiguration graph
KW - triangulations
KW - flip
KW - constrained triangulations
KW - shellability
KW - piecewise-linear balls
KW - token swapping
KW - trees
KW - coloured weighted token swapping
SN - 978-3-99078-005-3
TI - Reconfiguration problems
ER -
TY - JOUR
AB - A string graph is the intersection graph of a family of continuous arcs in the plane. The intersection graph of a family of plane convex sets is a string graph, but not all string graphs can be obtained in this way. We prove the following structure theorem conjectured by Janson and Uzzell: The vertex set of almost all string graphs on n vertices can be partitioned into five cliques such that some pair of them is not connected by any edge (n→∞). We also show that every graph with the above property is an intersection graph of plane convex sets. As a corollary, we obtain that almost all string graphs on n vertices are intersection graphs of plane convex sets.
AU - Pach, János
AU - Reed, Bruce
AU - Yuditsky, Yelena
ID - 7962
IS - 4
JF - Discrete and Computational Geometry
SN - 01795376
TI - Almost all string graphs are intersection graphs of plane convex sets
VL - 63
ER -
TY - CONF
AB - Discrete Morse theory has recently lead to new developments in the theory of random geometric complexes. This article surveys the methods and results obtained with this new approach, and discusses some of its shortcomings. It uses simulations to illustrate the results and to form conjectures, getting numerical estimates for combinatorial, topological, and geometric properties of weighted and unweighted Delaunay mosaics, their dual Voronoi tessellations, and the Alpha and Wrap complexes contained in the mosaics.
AU - Edelsbrunner, Herbert
AU - Nikitenko, Anton
AU - Ölsböck, Katharina
AU - Synak, Peter
ID - 8135
SN - 21932808
T2 - Topological Data Analysis
TI - Radius functions on Poisson–Delaunay mosaics and related complexes experimentally
VL - 15
ER -
TY - JOUR
AB - Fejes Tóth [3] studied approximations of smooth surfaces in three-space by piecewise flat triangular meshes with a given number of vertices on the surface that are optimal with respect to Hausdorff distance. He proves that this Hausdorff distance decreases inversely proportional with the number of vertices of the approximating mesh if the surface is convex. He also claims that this Hausdorff distance is inversely proportional to the square of the number of vertices for a specific non-convex surface, namely a one-sheeted hyperboloid of revolution bounded by two congruent circles. We refute this claim, and show that the asymptotic behavior of the Hausdorff distance is linear, that is the same as for convex surfaces.
AU - Vegter, Gert
AU - Wintraecken, Mathijs
ID - 8163
IS - 2
JF - Studia Scientiarum Mathematicarum Hungarica
SN - 0081-6906
TI - Refutation of a claim made by Fejes Tóth on the accuracy of surface meshes
VL - 57
ER -
TY - JOUR
AB - We consider the following setting: suppose that we are given a manifold M in Rd with positive reach. Moreover assume that we have an embedded simplical complex A without boundary, whose vertex set lies on the manifold, is sufficiently dense and such that all simplices in A have sufficient quality. We prove that if, locally, interiors of the projection of the simplices onto the tangent space do not intersect, then A is a triangulation of the manifold, that is, they are homeomorphic.
AU - Boissonnat, Jean-Daniel
AU - Dyer, Ramsay
AU - Ghosh, Arijit
AU - Lieutier, Andre
AU - Wintraecken, Mathijs
ID - 8248
JF - Discrete and Computational Geometry
SN - 0179-5376
TI - Local conditions for triangulating submanifolds of Euclidean space
VL - 66
ER -
TY - JOUR
AU - Pach, János
ID - 8323
JF - Discrete and Computational Geometry
SN - 01795376
TI - A farewell to Ricky Pollack
VL - 64
ER -
TY - JOUR
AB - Canonical parametrisations of classical confocal coordinate systems are introduced and exploited to construct non-planar analogues of incircular (IC) nets on individual quadrics and systems of confocal quadrics. Intimate connections with classical deformations of quadrics that are isometric along asymptotic lines and circular cross-sections of quadrics are revealed. The existence of octahedral webs of surfaces of Blaschke type generated by asymptotic and characteristic lines that are diagonally related to lines of curvature is proved theoretically and established constructively. Appropriate samplings (grids) of these webs lead to three-dimensional extensions of non-planar IC nets. Three-dimensional octahedral grids composed of planes and spatially extending (checkerboard) IC-nets are shown to arise in connection with systems of confocal quadrics in Minkowski space. In this context, the Laguerre geometric notion of conical octahedral grids of planes is introduced. The latter generalise the octahedral grids derived from systems of confocal quadrics in Minkowski space. An explicit construction of conical octahedral grids is presented. The results are accompanied by various illustrations which are based on the explicit formulae provided by the theory.
AU - Akopyan, Arseniy
AU - Bobenko, Alexander I.
AU - Schief, Wolfgang K.
AU - Techter, Jan
ID - 8338
JF - Discrete and Computational Geometry
SN - 0179-5376
TI - On mutually diagonal nets on (confocal) quadrics and 3-dimensional webs
VL - 66
ER -
TY - JOUR
AB - We prove some recent experimental observations of Dan Reznik concerning periodic billiard orbits in ellipses. For example, the sum of cosines of the angles of a periodic billiard polygon remains constant in the 1-parameter family of such polygons (that exist due to the Poncelet porism). In our proofs, we use geometric and complex analytic methods.
AU - Akopyan, Arseniy
AU - Schwartz, Richard
AU - Tabachnikov, Serge
ID - 8538
JF - European Journal of Mathematics
SN - 2199-675X
TI - Billiards in ellipses revisited
ER -
TY - CONF
AB - We evaluate the usefulness of persistent homology in the analysis of heart rate variability. In our approach we extract several topological descriptors characterising datasets of RR-intervals, which are later used in classical machine learning algorithms. By this method we are able to differentiate the group of patients with the history of transient ischemic attack and the group of hypertensive patients.
AU - Graff, Grzegorz
AU - Graff, Beata
AU - Jablonski, Grzegorz
AU - Narkiewicz, Krzysztof
ID - 8580
SN - 9781728157511
T2 - 11th Conference of the European Study Group on Cardiovascular Oscillations: Computation and Modelling in Physiology: New Challenges and Opportunities,
TI - The application of persistent homology in the analysis of heart rate variability
ER -
TY - CHAP
AB - We study the Gromov waist in the sense of t-neighborhoods for measures in the Euclidean space, motivated by the famous theorem of Gromov about the waist of radially symmetric Gaussian measures. In particular, it turns our possible to extend Gromov’s original result to the case of not necessarily radially symmetric Gaussian measure. We also provide examples of measures having no t-neighborhood waist property, including a rather wide class
of compactly supported radially symmetric measures and their maps into the Euclidean space of dimension at least 2.
We use a simpler form of Gromov’s pancake argument to produce some estimates of t-neighborhoods of (weighted) volume-critical submanifolds in the spirit of the waist theorems, including neighborhoods of algebraic manifolds in the complex projective space. In the appendix of this paper we provide for reader’s convenience a more detailed explanation of the Caffarelli theorem that we use to handle not necessarily radially symmetric Gaussian
measures.
AU - Akopyan, Arseniy
AU - Karasev, Roman
ED - Klartag, Bo'az
ED - Milman, Emanuel
ID - 74
SN - 00758434
T2 - Geometric Aspects of Functional Analysis
TI - Gromov's waist of non-radial Gaussian measures and radial non-Gaussian measures
VL - 2256
ER -
TY - THES
AB - Many methods for the reconstruction of shapes from sets of points produce ordered simplicial complexes, which are collections of vertices, edges, triangles, and their higher-dimensional analogues, called simplices, in which every simplex gets assigned a real value measuring its size. This thesis studies ordered simplicial complexes, with a focus on their topology, which reflects the connectedness of the represented shapes and the presence of holes. We are interested both in understanding better the structure of these complexes, as well as in developing algorithms for applications.
For the Delaunay triangulation, the most popular measure for a simplex is the radius of the smallest empty circumsphere. Based on it, we revisit Alpha and Wrap complexes and experimentally determine their probabilistic properties for random data. Also, we prove the existence of tri-partitions, propose algorithms to open and close holes, and extend the concepts from Euclidean to Bregman geometries.
AU - Ölsböck, Katharina
ID - 7460
KW - shape reconstruction
KW - hole manipulation
KW - ordered complexes
KW - Alpha complex
KW - Wrap complex
KW - computational topology
KW - Bregman geometry
SN - 2663-337X
TI - The hole system of triangulated shapes
ER -
TY - JOUR
AB - Slicing a Voronoi tessellation in ${R}^n$ with a $k$-plane gives a $k$-dimensional weighted Voronoi tessellation, also known as a power diagram or Laguerre tessellation. Mapping every simplex of the dual weighted Delaunay mosaic to the radius of the smallest empty circumscribed sphere whose center lies in the $k$-plane gives a generalized discrete Morse function. Assuming the Voronoi tessellation is generated by a Poisson point process in ${R}^n$, we study the expected number of simplices in the $k$-dimensional weighted Delaunay mosaic as well as the expected number of intervals of the Morse function, both as functions of a radius threshold. As a by-product, we obtain a new proof for the expected number of connected components (clumps) in a line section of a circular Boolean model in ${R}^n$.
AU - Edelsbrunner, Herbert
AU - Nikitenko, Anton
ID - 7554
IS - 4
JF - Theory of Probability and its Applications
SN - 0040585X
TI - Weighted Poisson–Delaunay mosaics
VL - 64
ER -
TY - JOUR
AB - Coxeter triangulations are triangulations of Euclidean space based on a single simplex. By this we mean that given an individual simplex we can recover the entire triangulation of Euclidean space by inductively reflecting in the faces of the simplex. In this paper we establish that the quality of the simplices in all Coxeter triangulations is O(1/d−−√) of the quality of regular simplex. We further investigate the Delaunay property for these triangulations. Moreover, we consider an extension of the Delaunay property, namely protection, which is a measure of non-degeneracy of a Delaunay triangulation. In particular, one family of Coxeter triangulations achieves the protection O(1/d2). We conjecture that both bounds are optimal for triangulations in Euclidean space.
AU - Choudhary, Aruni
AU - Kachanovich, Siargey
AU - Wintraecken, Mathijs
ID - 7567
JF - Mathematics in Computer Science
SN - 1661-8270
TI - Coxeter triangulations have good quality
VL - 14
ER -
TY - JOUR
AB - Generalizing the decomposition of a connected planar graph into a tree and a dual tree, we prove a combinatorial analog of the classic Helmholtz–Hodge decomposition of a smooth vector field. Specifically, we show that for every polyhedral complex, K, and every dimension, p, there is a partition of the set of p-cells into a maximal p-tree, a maximal p-cotree, and a collection of p-cells whose cardinality is the p-th reduced Betti number of K. Given an ordering of the p-cells, this tri-partition is unique, and it can be computed by a matrix reduction algorithm that also constructs canonical bases of cycle and boundary groups.
AU - Edelsbrunner, Herbert
AU - Ölsböck, Katharina
ID - 7666
JF - Discrete and Computational Geometry
SN - 01795376
TI - Tri-partitions and bases of an ordered complex
VL - 64
ER -
TY - JOUR
AB - In this paper we find a tight estimate for Gromov’s waist of the balls in spaces of constant curvature, deduce the estimates for the balls in Riemannian manifolds with upper bounds on the curvature (CAT(ϰ)-spaces), and establish similar result for normed spaces.
AU - Akopyan, Arseniy
AU - Karasev, Roman
ID - 10867
IS - 3
JF - International Mathematics Research Notices
KW - General Mathematics
SN - 1073-7928
TI - Waist of balls in hyperbolic and spherical spaces
VL - 2020
ER -
TY - CONF
AB - Even though Delaunay originally introduced his famous triangulations in the case of infinite point sets with translational periodicity, a software that computes such triangulations in the general case is not yet available, to the best of our knowledge. Combining and generalizing previous work, we present a practical algorithm for computing such triangulations. The algorithm has been implemented and experiments show that its performance is as good as the one of the CGAL package, which is restricted to cubic periodicity.
AU - Osang, Georg F
AU - Rouxel-Labbé, Mael
AU - Teillaud, Monique
ID - 8703
SN - 18688969
T2 - 28th Annual European Symposium on Algorithms
TI - Generalizing CGAL periodic Delaunay triangulations
VL - 173
ER -
TY - JOUR
AB - The morphometric approach [11, 14] writes the solvation free energy as a linear combination of weighted versions of the volume, area, mean curvature, and Gaussian curvature of the space-filling diagram. We give a formula for the derivative of the weighted Gaussian curvature. Together with the derivatives of the weighted volume in [7], the weighted area in [4], and the weighted mean curvature in [1], this yields the derivative of the morphometric expression of solvation free energy.
AU - Akopyan, Arseniy
AU - Edelsbrunner, Herbert
ID - 9156
IS - 1
JF - Computational and Mathematical Biophysics
SN - 2544-7297
TI - The weighted Gaussian curvature derivative of a space-filling diagram
VL - 8
ER -
TY - JOUR
AB - Representing an atom by a solid sphere in 3-dimensional Euclidean space, we get the space-filling diagram of a molecule by taking the union. Molecular dynamics simulates its motion subject to bonds and other forces, including the solvation free energy. The morphometric approach [12, 17] writes the latter as a linear combination of weighted versions of the volume, area, mean curvature, and Gaussian curvature of the space-filling diagram. We give a formula for the derivative of the weighted mean curvature. Together with the derivatives of the weighted volume in [7], the weighted area in [3], and the weighted Gaussian curvature [1], this yields the derivative of the morphometric expression of the solvation free energy.
AU - Akopyan, Arseniy
AU - Edelsbrunner, Herbert
ID - 9157
IS - 1
JF - Computational and Mathematical Biophysics
SN - 2544-7297
TI - The weighted mean curvature derivative of a space-filling diagram
VL - 8
ER -
TY - JOUR
AB - Rhombic dodecahedron is a space filling polyhedron which represents the close packing of spheres in 3D space and the Voronoi structures of the face centered cubic (FCC) lattice. In this paper, we describe a new coordinate system where every 3-integer coordinates grid point corresponds to a rhombic dodecahedron centroid. In order to illustrate the interest of the new coordinate system, we propose the characterization of 3D digital plane with its topological features, such as the interrelation between the thickness of the digital plane and the separability constraint we aim to obtain. We also present the characterization of 3D digital lines and study it as the intersection of multiple digital planes. Characterization of 3D digital sphere with relevant topological features is proposed as well along with the 48-symmetry appearing in the new coordinate system.
AU - Biswas, Ranita
AU - Largeteau-Skapin, Gaëlle
AU - Zrour, Rita
AU - Andres, Eric
ID - 9249
IS - 1
JF - Mathematical Morphology - Theory and Applications
SN - 2353-3390
TI - Digital objects in rhombic dodecahedron grid
VL - 4
ER -
TY - CONF
AB - We call a multigraph non-homotopic if it can be drawn in the plane in such a way that no two edges connecting the same pair of vertices can be continuously transformed into each other without passing through a vertex, and no loop can be shrunk to its end-vertex in the same way. It is easy to see that a non-homotopic multigraph on n>1 vertices can have arbitrarily many edges. We prove that the number of crossings between the edges of a non-homotopic multigraph with n vertices and m>4n edges is larger than cm2n for some constant c>0 , and that this bound is tight up to a polylogarithmic factor. We also show that the lower bound is not asymptotically sharp as n is fixed and m⟶∞ .
AU - Pach, János
AU - Tardos, Gábor
AU - Tóth, Géza
ID - 9299
SN - 0302-9743
T2 - 28th International Symposium on Graph Drawing and Network Visualization
TI - Crossings between non-homotopic edges
VL - 12590
ER -
TY - JOUR
AB - Various kinds of data are routinely represented as discrete probability distributions. Examples include text documents summarized by histograms of word occurrences and images represented as histograms of oriented gradients. Viewing a discrete probability distribution as a point in the standard simplex of the appropriate dimension, we can understand collections of such objects in geometric and topological terms. Importantly, instead of using the standard Euclidean distance, we look into dissimilarity measures with information-theoretic justification, and we develop the theory needed for applying topological data analysis in this setting. In doing so, we emphasize constructions that enable the usage of existing computational topology software in this context.
AU - Edelsbrunner, Herbert
AU - Virk, Ziga
AU - Wagner, Hubert
ID - 9630
IS - 2
JF - Journal of Computational Geometry
TI - Topological data analysis in information space
VL - 11
ER -
TY - CONF
AB - Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codimension, i.e. manifolds defined as the zero set of some multivariate vector-valued smooth function f: ℝ^d → ℝ^(d-n). A natural (and efficient) way to approximate an isomanifold is to consider its Piecewise-Linear (PL) approximation based on a triangulation 𝒯 of the ambient space ℝ^d. In this paper, we give conditions under which the PL-approximation of an isomanifold is topologically equivalent to the isomanifold. The conditions are easy to satisfy in the sense that they can always be met by taking a sufficiently fine triangulation 𝒯. This contrasts with previous results on the triangulation of manifolds where, in arbitrary dimensions, delicate perturbations are needed to guarantee topological correctness, which leads to strong limitations in practice. We further give a bound on the Fréchet distance between the original isomanifold and its PL-approximation. Finally we show analogous results for the PL-approximation of an isomanifold with boundary.
AU - Boissonnat, Jean-Daniel
AU - Wintraecken, Mathijs
ID - 7952
SN - 1868-8969
T2 - 36th International Symposium on Computational Geometry
TI - The topological correctness of PL-approximations of isomanifolds
VL - 164
ER -
TY - GEN
AB - The input to the token swapping problem is a graph with vertices v1, v2, . . . , vn, and n tokens with labels 1,2, . . . , n, one on each vertex. The goal is to get token i to vertex vi for all i= 1, . . . , n using a minimum number of swaps, where a swap exchanges the tokens on the endpoints of an edge.Token swapping on a tree, also known as “sorting with a transposition tree,” is not known to be in P nor NP-complete. We present some partial results:
1. An optimum swap sequence may need to perform a swap on a leaf vertex that has the correct token (a “happy leaf”), disproving a conjecture of Vaughan.
2. Any algorithm that fixes happy leaves—as all known approximation algorithms for the problem do—has approximation factor at least 4/3. Furthermore, the two best-known 2-approximation algorithms have approximation factor exactly 2.
3. A generalized problem—weighted coloured token swapping—is NP-complete on trees, but solvable in polynomial time on paths and stars. In this version, tokens and vertices have colours, and colours have weights. The goal is to get every token to a vertex of the same colour, and the cost of a swap is the sum of the weights of the two tokens involved.
AU - Biniaz, Ahmad
AU - Jain, Kshitij
AU - Lubiw, Anna
AU - Masárová, Zuzana
AU - Miltzow, Tillmann
AU - Mondal, Debajyoti
AU - Naredla, Anurag Murty
AU - Tkadlec, Josef
AU - Turcotte, Alexi
ID - 7950
T2 - arXiv
TI - Token swapping on trees
ER -
TY - JOUR
AB - The order-k Voronoi tessellation of a locally finite set 𝑋⊆ℝ𝑛 decomposes ℝ𝑛 into convex domains whose points have the same k nearest neighbors in X. Assuming X is a stationary Poisson point process, we give explicit formulas for the expected number and total area of faces of a given dimension per unit volume of space. We also develop a relaxed version of discrete Morse theory and generalize by counting only faces, for which the k nearest points in X are within a given distance threshold.
AU - Edelsbrunner, Herbert
AU - Nikitenko, Anton
ID - 5678
IS - 4
JF - Discrete and Computational Geometry
SN - 01795376
TI - Poisson–Delaunay Mosaics of Order k
VL - 62
ER -
TY - JOUR
AB - We answer a question of David Hilbert: given two circles it is not possible in general to construct their centers using only a straightedge. On the other hand, we give infinitely many families of pairs of circles for which such construction is possible.
AU - Akopyan, Arseniy
AU - Fedorov, Roman
ID - 6050
JF - Proceedings of the American Mathematical Society
TI - Two circles and only a straightedge
VL - 147
ER -
TY - CONF
AB - When can a polyomino piece of paper be folded into a unit cube? Prior work studied tree-like polyominoes, but polyominoes with holes remain an intriguing open problem. We present sufficient conditions for a polyomino with hole(s) to fold into a cube, and conditions under which cube folding is impossible. In particular, we show that all but five special simple holes guarantee foldability.
AU - Aichholzer, Oswin
AU - Akitaya, Hugo A
AU - Cheung, Kenneth C
AU - Demaine, Erik D
AU - Demaine, Martin L
AU - Fekete, Sandor P
AU - Kleist, Linda
AU - Kostitsyna, Irina
AU - Löffler, Maarten
AU - Masárová, Zuzana
AU - Mundilova, Klara
AU - Schmidt, Christiane
ID - 6989
T2 - Proceedings of the 31st Canadian Conference on Computational Geometry
TI - Folding polyominoes with holes into a cube
ER -
TY - CONF
AB - We present LiveTraVeL (Live Transit Vehicle Labeling), a real-time system to label a stream of noisy observations of transit vehicle trajectories with the transit routes they are serving (e.g., northbound bus #5). In order to scale efficiently to large transit networks, our system first retrieves a small set of candidate routes from a geometrically indexed data structure, then applies a fine-grained scoring step to choose the best match. Given that real-time data remains unavailable for the majority of the world’s transit agencies, these inferences can help feed a real-time map of a transit system’s trips, infer transit trip delays in real time, or measure and correct noisy transit tracking data. This system can run on vehicle observations from a variety of sources that don’t attach route information to vehicle observations, such as public imagery streams or user-contributed transit vehicle sightings.We abstract away the specifics of the sensing system and demonstrate the effectiveness of our system on a "semisynthetic" dataset of all New York City buses, where we simulate sensed trajectories by starting with fully labeled vehicle trajectories reported via the GTFS-Realtime protocol, removing the transit route IDs, and perturbing locations with synthetic noise. Using just the geometric shapes of the trajectories, we demonstrate that our system converges on the correct route ID within a few minutes, even after a vehicle switches from serving one trip to the next.
AU - Osang, Georg F
AU - Cook, James
AU - Fabrikant, Alex
AU - Gruteser, Marco
ID - 7216
SN - 9781538670248
T2 - 2019 IEEE Intelligent Transportation Systems Conference
TI - LiveTraVeL: Real-time matching of transit vehicle trajectories to transit routes at scale
ER -
TY - JOUR
AB - We give non-degeneracy criteria for Riemannian simplices based on simplices in spaces of constant sectional curvature. It extends previous work on Riemannian simplices, where we developed Riemannian simplices with respect to Euclidean reference simplices. The criteria we give in this article are in terms of quality measures for spaces of constant curvature that we develop here. We see that simplices in spaces that have nearly constant curvature, are already non-degenerate under very weak quality demands. This is of importance because it allows for sampling of Riemannian manifolds based on anisotropy of the manifold and not (absolute) curvature.
AU - Dyer, Ramsay
AU - Vegter, Gert
AU - Wintraecken, Mathijs
ID - 6515
IS - 1
JF - Journal of Computational Geometry
SN - 1920-180X
TI - Simplices modelled on spaces of constant curvature
VL - 10
ER -
TY - JOUR
AB - We use the canonical bases produced by the tri-partition algorithm in (Edelsbrunner and Ölsböck, 2018) to open and close holes in a polyhedral complex, K. In a concrete application, we consider the Delaunay mosaic of a finite set, we let K be an Alpha complex, and we use the persistence diagram of the distance function to guide the hole opening and closing operations. The dependences between the holes define a partial order on the cells in K that characterizes what can and what cannot be constructed using the operations. The relations in this partial order reveal structural information about the underlying filtration of complexes beyond what is expressed by the persistence diagram.
AU - Edelsbrunner, Herbert
AU - Ölsböck, Katharina
ID - 6608
JF - Computer Aided Geometric Design
TI - Holes and dependences in an ordered complex
VL - 73
ER -
TY - CONF
AB - Fejes Tóth [5] and Schneider [9] studied approximations of smooth convex hypersurfaces in Euclidean space by piecewise flat triangular meshes with a given number of vertices on the hypersurface that are optimal with respect to Hausdorff distance. They proved that this Hausdorff distance decreases inversely proportional with m 2/(d−1), where m is the number of vertices and d is the dimension of Euclidean space. Moreover the pro-portionality constant can be expressed in terms of the Gaussian curvature, an intrinsic quantity. In this short note, we prove the extrinsic nature of this constant for manifolds of sufficiently high codimension. We do so by constructing an family of isometric embeddings of the flat torus in Euclidean space.
AU - Vegter, Gert
AU - Wintraecken, Mathijs
ID - 6628
T2 - The 31st Canadian Conference in Computational Geometry
TI - The extrinsic nature of the Hausdorff distance of optimal triangulations of manifolds
ER -
TY - JOUR
AB - In this paper we prove several new results around Gromov's waist theorem. We give a simple proof of Vaaler's theorem on sections of the unit cube using the Borsuk-Ulam-Crofton technique, consider waists of real and complex projective spaces, flat tori, convex bodies in Euclidean space; and establish waist-type results in terms of the Hausdorff measure.
AU - Akopyan, Arseniy
AU - Hubard, Alfredo
AU - Karasev, Roman
ID - 6634
IS - 2
JF - Topological Methods in Nonlinear Analysis
TI - Lower and upper bounds for the waists of different spaces
VL - 53
ER -
TY - CONF
AB - Various kinds of data are routinely represented as discrete probability distributions. Examples include text documents summarized by histograms of word occurrences and images represented as histograms of oriented gradients. Viewing a discrete probability distribution as a point in the standard simplex of the appropriate dimension, we can understand collections of such objects in geometric and topological terms. Importantly, instead of using the standard Euclidean distance, we look into dissimilarity measures with information-theoretic justification, and we develop the theory
needed for applying topological data analysis in this setting. In doing so, we emphasize constructions that enable the usage of existing computational topology software in this context.
AU - Edelsbrunner, Herbert
AU - Virk, Ziga
AU - Wagner, Hubert
ID - 6648
SN - 9783959771047
T2 - 35th International Symposium on Computational Geometry
TI - Topological data analysis in information space
VL - 129
ER -
TY - JOUR
AB - In this paper we discuss three results. The first two concern general sets of positive reach: we first characterize the reach of a closed set by means of a bound on the metric distortion between the distance measured in the ambient Euclidean space and the shortest path distance measured in the set. Secondly, we prove that the intersection of a ball with radius less than the reach with the set is geodesically convex, meaning that the shortest path between any two points in the intersection lies itself in the intersection. For our third result we focus on manifolds with positive reach and give a bound on the angle between tangent spaces at two different points in terms of the reach and the distance between the two points.
AU - Boissonnat, Jean-Daniel
AU - Lieutier, André
AU - Wintraecken, Mathijs
ID - 6671
IS - 1-2
JF - Journal of Applied and Computational Topology
SN - 2367-1726
TI - The reach, metric distortion, geodesic convexity and the variation of tangent spaces
VL - 3
ER -
TY - JOUR
AB - We study the topology generated by the temperature fluctuations of the cosmic microwave background (CMB) radiation, as quantified by the number of components and holes, formally given by the Betti numbers, in the growing excursion sets. We compare CMB maps observed by the Planck satellite with a thousand simulated maps generated according to the ΛCDM paradigm with Gaussian distributed fluctuations. The comparison is multi-scale, being performed on a sequence of degraded maps with mean pixel separation ranging from 0.05 to 7.33°. The survey of the CMB over 𝕊2 is incomplete due to obfuscation effects by bright point sources and other extended foreground objects like our own galaxy. To deal with such situations, where analysis in the presence of “masks” is of importance, we introduce the concept of relative homology. The parametric χ2-test shows differences between observations and simulations, yielding p-values at percent to less than permil levels roughly between 2 and 7°, with the difference in the number of components and holes peaking at more than 3σ sporadically at these scales. The highest observed deviation between the observations and simulations for b0 and b1 is approximately between 3σ and 4σ at scales of 3–7°. There are reports of mildly unusual behaviour of the Euler characteristic at 3.66° in the literature, computed from independent measurements of the CMB temperature fluctuations by Planck’s predecessor, the Wilkinson Microwave Anisotropy Probe (WMAP) satellite. The mildly anomalous behaviour of the Euler characteristic is phenomenologically related to the strongly anomalous behaviour of components and holes, or the zeroth and first Betti numbers, respectively. Further, since these topological descriptors show consistent anomalous behaviour over independent measurements of Planck and WMAP, instrumental and systematic errors may be an unlikely source. These are also the scales at which the observed maps exhibit low variance compared to the simulations, and approximately the range of scales at which the power spectrum exhibits a dip with respect to the theoretical model. Non-parametric tests show even stronger differences at almost all scales. Crucially, Gaussian simulations based on power-spectrum matching the characteristics of the observed dipped power spectrum are not able to resolve the anomaly. Understanding the origin of the anomalies in the CMB, whether cosmological in nature or arising due to late-time effects, is an extremely challenging task. Regardless, beyond the trivial possibility that this may still be a manifestation of an extreme Gaussian case, these observations, along with the super-horizon scales involved, may motivate the study of primordial non-Gaussianity. Alternative scenarios worth exploring may be models with non-trivial topology, including topological defect models.
AU - Pranav, Pratyush
AU - Adler, Robert J.
AU - Buchert, Thomas
AU - Edelsbrunner, Herbert
AU - Jones, Bernard J.T.
AU - Schwartzman, Armin
AU - Wagner, Hubert
AU - Van De Weygaert, Rien
ID - 6756
JF - Astronomy and Astrophysics
SN - 00046361
TI - Unexpected topology of the temperature fluctuations in the cosmic microwave background
VL - 627
ER -
TY - JOUR
AB - The Regge symmetry is a set of remarkable relations between two tetrahedra whose edge lengths are related in a simple fashion. It was first discovered as a consequence of an asymptotic formula in mathematical physics. Here, we give a simple geometric proof of Regge symmetries in Euclidean, spherical, and hyperbolic geometry.
AU - Akopyan, Arseniy
AU - Izmestiev, Ivan
ID - 6793
IS - 5
JF - Bulletin of the London Mathematical Society
SN - 00246093
TI - The Regge symmetry, confocal conics, and the Schläfli formula
VL - 51
ER -
TY - JOUR
AB - In this paper we construct a family of exact functors from the category of Whittaker modules of the simple complex Lie algebra of type to the category of finite-dimensional modules of the graded affine Hecke algebra of type . Using results of Backelin [2] and of Arakawa-Suzuki [1], we prove that these functors map standard modules to standard modules (or zero) and simple modules to simple modules (or zero). Moreover, we show that each simple module of the graded affine Hecke algebra appears as the image of a simple Whittaker module. Since the Whittaker category contains the BGG category as a full subcategory, our results generalize results of Arakawa-Suzuki [1], which in turn generalize Schur-Weyl duality between finite-dimensional representations of and representations of the symmetric group .
AU - Brown, Adam
ID - 6828
JF - Journal of Algebra
SN - 0021-8693
TI - Arakawa-Suzuki functors for Whittaker modules
VL - 538
ER -
TY - JOUR
AB - Motivated by biological questions, we study configurations of equal spheres that neither pack nor cover. Placing their centers on a lattice, we define the soft density of the configuration by penalizing multiple overlaps. Considering the 1-parameter family of diagonally distorted 3-dimensional integer lattices, we show that the soft density is maximized at the FCC lattice.
AU - Edelsbrunner, Herbert
AU - Iglesias Ham, Mabel
ID - 312
IS - 1
JF - SIAM J Discrete Math
SN - 08954801
TI - On the optimality of the FCC lattice for soft sphere packing
VL - 32
ER -
TY - JOUR
AB - We consider congruences of straight lines in a plane with the combinatorics of the square grid, with all elementary quadrilaterals possessing an incircle. It is shown that all the vertices of such nets (we call them incircular or IC-nets) lie on confocal conics. Our main new results are on checkerboard IC-nets in the plane. These are congruences of straight lines in the plane with the combinatorics of the square grid, combinatorially colored as a checkerboard, such that all black coordinate quadrilaterals possess inscribed circles. We show how this larger class of IC-nets appears quite naturally in Laguerre geometry of oriented planes and spheres and leads to new remarkable incidence theorems. Most of our results are valid in hyperbolic and spherical geometries as well. We present also generalizations in spaces of higher dimension, called checkerboard IS-nets. The construction of these nets is based on a new 9 inspheres incidence theorem.
AU - Akopyan, Arseniy
AU - Bobenko, Alexander
ID - 458
IS - 4
JF - Transactions of the American Mathematical Society
TI - Incircular nets and confocal conics
VL - 370
ER -
TY - JOUR
AB - Inclusion–exclusion is an effective method for computing the volume of a union of measurable sets. We extend it to multiple coverings, proving short inclusion–exclusion formulas for the subset of Rn covered by at least k balls in a finite set. We implement two of the formulas in dimension n=3 and report on results obtained with our software.
AU - Edelsbrunner, Herbert
AU - Iglesias Ham, Mabel
ID - 530
JF - Computational Geometry: Theory and Applications
TI - Multiple covers with balls I: Inclusion–exclusion
VL - 68
ER -
TY - JOUR
AB - Inside a two-dimensional region (``cake""), there are m nonoverlapping tiles of a certain kind (``toppings""). We want to expand the toppings while keeping them nonoverlapping, and possibly add some blank pieces of the same ``certain kind,"" such that the entire cake is covered. How many blanks must we add? We study this question in several cases: (1) The cake and toppings are general polygons. (2) The cake and toppings are convex figures. (3) The cake and toppings are axis-parallel rectangles. (4) The cake is an axis-parallel rectilinear polygon and the toppings are axis-parallel rectangles. In all four cases, we provide tight bounds on the number of blanks.
AU - Akopyan, Arseniy
AU - Segal Halevi, Erel
ID - 58
IS - 3
JF - SIAM Journal on Discrete Mathematics
TI - Counting blanks in polygonal arrangements
VL - 32
ER -
TY - GEN
AB - We prove that any convex body in the plane can be partitioned into m convex parts of equal areas and perimeters for any integer m≥2; this result was previously known for prime powers m=pk. We also give a higher-dimensional generalization.
AU - Akopyan, Arseniy
AU - Avvakumov, Sergey
AU - Karasev, Roman
ID - 75
TI - Convex fair partitions into arbitrary number of pieces
ER -
TY - JOUR
AB - The goal of this article is to introduce the reader to the theory of intrinsic geometry of convex surfaces. We illustrate the power of the tools by proving a theorem on convex surfaces containing an arbitrarily long closed simple geodesic. Let us remind ourselves that a curve in a surface is called geodesic if every sufficiently short arc of the curve is length minimizing; if, in addition, it has no self-intersections, we call it simple geodesic. A tetrahedron with equal opposite edges is called isosceles. The axiomatic method of Alexandrov geometry allows us to work with the metrics of convex surfaces directly, without approximating it first by a smooth or polyhedral metric. Such approximations destroy the closed geodesics on the surface; therefore it is difficult (if at all possible) to apply approximations in the proof of our theorem. On the other hand, a proof in the smooth or polyhedral case usually admits a translation into Alexandrov’s language; such translation makes the result more general. In fact, our proof resembles a translation of the proof given by Protasov. Note that the main theorem implies in particular that a smooth convex surface does not have arbitrarily long simple closed geodesics. However we do not know a proof of this corollary that is essentially simpler than the one presented below.
AU - Akopyan, Arseniy
AU - Petrunin, Anton
ID - 106
IS - 3
JF - Mathematical Intelligencer
TI - Long geodesics on convex surfaces
VL - 40
ER -
TY - JOUR
AB - In 1945, A.W. Goodman and R.E. Goodman proved the following conjecture by P. Erdős: Given a family of (round) disks of radii r1, … , rn in the plane, it is always possible to cover them by a disk of radius R= ∑ ri, provided they cannot be separated into two subfamilies by a straight line disjoint from the disks. In this note we show that essentially the same idea may work for different analogues and generalizations of their result. In particular, we prove the following: Given a family of positive homothetic copies of a fixed convex body K⊂ Rd with homothety coefficients τ1, … , τn> 0 , it is always possible to cover them by a translate of d+12(∑τi)K, provided they cannot be separated into two subfamilies by a hyperplane disjoint from the homothets.
AU - Akopyan, Arseniy
AU - Balitskiy, Alexey
AU - Grigorev, Mikhail
ID - 1064
IS - 4
JF - Discrete & Computational Geometry
SN - 01795376
TI - On the circle covering theorem by A.W. Goodman and R.E. Goodman
VL - 59
ER -
TY - CONF
AB - Given a locally finite X ⊆ ℝd and a radius r ≥ 0, the k-fold cover of X and r consists of all points in ℝd that have k or more points of X within distance r. We consider two filtrations - one in scale obtained by fixing k and increasing r, and the other in depth obtained by fixing r and decreasing k - and we compute the persistence diagrams of both. While standard methods suffice for the filtration in scale, we need novel geometric and topological concepts for the filtration in depth. In particular, we introduce a rhomboid tiling in ℝd+1 whose horizontal integer slices are the order-k Delaunay mosaics of X, and construct a zigzag module from Delaunay mosaics that is isomorphic to the persistence module of the multi-covers.
AU - Edelsbrunner, Herbert
AU - Osang, Georg F
ID - 187
TI - The multi-cover persistence of Euclidean balls
VL - 99
ER -
TY - CONF
AB - Smallest enclosing spheres of finite point sets are central to methods in topological data analysis. Focusing on Bregman divergences to measure dissimilarity, we prove bounds on the location of the center of a smallest enclosing sphere. These bounds depend on the range of radii for which Bregman balls are convex.
AU - Edelsbrunner, Herbert
AU - Virk, Ziga
AU - Wagner, Hubert
ID - 188
TI - Smallest enclosing spheres and Chernoff points in Bregman geometry
VL - 99
ER -
TY - CONF
AB - We show attacks on five data-independent memory-hard functions (iMHF) that were submitted to the password hashing competition (PHC). Informally, an MHF is a function which cannot be evaluated on dedicated hardware, like ASICs, at significantly lower hardware and/or energy cost than evaluating a single instance on a standard single-core architecture. Data-independent means the memory access pattern of the function is independent of the input; this makes iMHFs harder to construct than data-dependent ones, but the latter can be attacked by various side-channel attacks. Following [Alwen-Blocki'16], we capture the evaluation of an iMHF as a directed acyclic graph (DAG). The cumulative parallel pebbling complexity of this DAG is a measure for the hardware cost of evaluating the iMHF on an ASIC. Ideally, one would like the complexity of a DAG underlying an iMHF to be as close to quadratic in the number of nodes of the graph as possible. Instead, we show that (the DAGs underlying) the following iMHFs are far from this bound: Rig.v2, TwoCats and Gambit each having an exponent no more than 1.75. Moreover, we show that the complexity of the iMHF modes of the PHC finalists Pomelo and Lyra2 have exponents at most 1.83 and 1.67 respectively. To show this we investigate a combinatorial property of each underlying DAG (called its depth-robustness. By establishing upper bounds on this property we are then able to apply the general technique of [Alwen-Block'16] for analyzing the hardware costs of an iMHF.
AU - Alwen, Joel F
AU - Gazi, Peter
AU - Kamath Hosdurg, Chethan
AU - Klein, Karen
AU - Osang, Georg F
AU - Pietrzak, Krzysztof Z
AU - Reyzin, Lenoid
AU - Rolinek, Michal
AU - Rybar, Michal
ID - 193
T2 - Proceedings of the 2018 on Asia Conference on Computer and Communication Security
TI - On the memory hardness of data independent password hashing functions
ER -
TY - JOUR
AB - We prove that any cyclic quadrilateral can be inscribed in any closed convex C1-curve. The smoothness condition is not required if the quadrilateral is a rectangle.
AU - Akopyan, Arseniy
AU - Avvakumov, Sergey
ID - 6355
JF - Forum of Mathematics, Sigma
SN - 2050-5094
TI - Any cyclic quadrilateral can be inscribed in any closed convex smooth curve
VL - 6
ER -
TY - JOUR
AB - We consider families of confocal conics and two pencils of Apollonian circles having the same foci. We will show that these families of curves generate trivial 3-webs and find the exact formulas describing them.
AU - Akopyan, Arseniy
ID - 692
IS - 1
JF - Geometriae Dedicata
TI - 3-Webs generated by confocal conics and circles
VL - 194
ER -
TY - JOUR
AB - Using the geodesic distance on the n-dimensional sphere, we study the expected radius function of the Delaunay mosaic of a random set of points. Specifically, we consider the partition of the mosaic into intervals of the radius function and determine the expected number of intervals whose radii are less than or equal to a given threshold. We find that the expectations are essentially the same as for the Poisson–Delaunay mosaic in n-dimensional Euclidean space. Assuming the points are not contained in a hemisphere, the Delaunay mosaic is isomorphic to the boundary complex of the convex hull in Rn+1, so we also get the expected number of faces of a random inscribed polytope. As proved in Antonelli et al. [Adv. in Appl. Probab. 9–12 (1977–1980)], an orthant section of the n-sphere is isometric to the standard n-simplex equipped with the Fisher information metric. It follows that the latter space has similar stochastic properties as the n-dimensional Euclidean space. Our results are therefore relevant in information geometry and in population genetics.
AU - Edelsbrunner, Herbert
AU - Nikitenko, Anton
ID - 87
IS - 5
JF - Annals of Applied Probability
TI - Random inscribed polytopes have similar radius functions as Poisson-Delaunay mosaics
VL - 28
ER -
TY - THES
AB - We describe arrangements of three-dimensional spheres from a geometrical and topological point of view. Real data (fitting this setup) often consist of soft spheres which show certain degree of deformation while strongly packing against each other. In this context, we answer the following questions: If we model a soft packing of spheres by hard spheres that are allowed to overlap, can we measure the volume in the overlapped areas? Can we be more specific about the overlap volume, i.e. quantify how much volume is there covered exactly twice, three times, or k times? What would be a good optimization criteria that rule the arrangement of soft spheres while making a good use of the available space? Fixing a particular criterion, what would be the optimal sphere configuration? The first result of this thesis are short formulas for the computation of volumes covered by at least k of the balls. The formulas exploit information contained in the order-k Voronoi diagrams and its closely related Level-k complex. The used complexes lead to a natural generalization into poset diagrams, a theoretical formalism that contains the order-k and degree-k diagrams as special cases. In parallel, we define different criteria to determine what could be considered an optimal arrangement from a geometrical point of view. Fixing a criterion, we find optimal soft packing configurations in 2D and 3D where the ball centers lie on a lattice. As a last step, we use tools from computational topology on real physical data, to show the potentials of higher-order diagrams in the description of melting crystals. The results of the experiments leaves us with an open window to apply the theories developed in this thesis in real applications.
AU - Iglesias Ham, Mabel
ID - 201
TI - Multiple covers with balls
ER -
TY - JOUR
AB - We give a simple proof of T. Stehling's result [4], whereby in any normal tiling of the plane with convex polygons with number of sides not less than six, all tiles except a finite number are hexagons.
AU - Akopyan, Arseniy
ID - 409
IS - 4
JF - Comptes Rendus Mathematique
SN - 1631073X
TI - On the number of non-hexagons in a planar tiling
VL - 356
ER -
TY - CONF
AB - We present an efficient algorithm to compute Euler characteristic curves of gray scale images of arbitrary dimension. In various applications the Euler characteristic curve is used as a descriptor of an image. Our algorithm is the first streaming algorithm for Euler characteristic curves. The usage of streaming removes the necessity to store the entire image in RAM. Experiments show that our implementation handles terabyte scale images on commodity hardware. Due to lock-free parallelism, it scales well with the number of processor cores. Additionally, we put the concept of the Euler characteristic curve in the wider context of computational topology. In particular, we explain the connection with persistence diagrams.
AU - Heiss, Teresa
AU - Wagner, Hubert
ED - Felsberg, Michael
ED - Heyden, Anders
ED - Krüger, Norbert
ID - 833
SN - 03029743
TI - Streaming algorithm for Euler characteristic curves of multidimensional images
VL - 10424
ER -
TY - CONF
AB - Recent research has examined how to study the topological features of a continuous self-map by means of the persistence of the eigenspaces, for given eigenvalues, of the endomorphism induced in homology over a field. This raised the question of how to select dynamically significant eigenvalues. The present paper aims to answer this question, giving an algorithm that computes the persistence of eigenspaces for every eigenvalue simultaneously, also expressing said eigenspaces as direct sums of “finite” and “singular” subspaces.
AU - Ethier, Marc
AU - Jablonski, Grzegorz
AU - Mrozek, Marian
ID - 836
SN - 978-331956930-7
T2 - Special Sessions in Applications of Computer Algebra
TI - Finding eigenvalues of self-maps with the Kronecker canonical form
VL - 198
ER -
TY - CHAP
AB - The advent of high-throughput technologies and the concurrent advances in information sciences have led to a data revolution in biology. This revolution is most significant in molecular biology, with an increase in the number and scale of the “omics” projects over the last decade. Genomics projects, for example, have produced impressive advances in our knowledge of the information concealed into genomes, from the many genes that encode for the proteins that are responsible for most if not all cellular functions, to the noncoding regions that are now known to provide regulatory functions. Proteomics initiatives help to decipher the role of post-translation modifications on the protein structures and provide maps of protein-protein interactions, while functional genomics is the field that attempts to make use of the data produced by these projects to understand protein functions. The biggest challenge today is to assimilate the wealth of information provided by these initiatives into a conceptual framework that will help us decipher life. For example, the current views of the relationship between protein structure and function remain fragmented. We know of their sequences, more and more about their structures, we have information on their biological activities, but we have difficulties connecting this dotted line into an informed whole. We lack the experimental and computational tools for directly studying protein structure, function, and dynamics at the molecular and supra-molecular levels. In this chapter, we review some of the current developments in building the computational tools that are needed, focusing on the role that geometry and topology play in these efforts. One of our goals is to raise the general awareness about the importance of geometric methods in elucidating the mysterious foundations of our very existence. Another goal is the broadening of what we consider a geometric algorithm. There is plenty of valuable no-man’s-land between combinatorial and numerical algorithms, and it seems opportune to explore this land with a computational-geometric frame of mind.
AU - Edelsbrunner, Herbert
AU - Koehl, Patrice
ED - Toth, Csaba
ED - O'Rourke, Joseph
ED - Goodman, Jacob
ID - 84
T2 - Handbook of Discrete and Computational Geometry, Third Edition
TI - Computational topology for structural molecular biology
ER -
TY - JOUR
AB - Let X and Y be proper metric spaces. We show that a coarsely n-to-1 map f:X→Y induces an n-to-1 map of Higson coronas. This viewpoint turns out to be successful in showing that the classical dimension raising theorems hold in large scale; that is, if f:X→Y is a coarsely n-to-1 map between proper metric spaces X and Y then asdim(Y)≤asdim(X)+n−1. Furthermore we introduce coarsely open coarsely n-to-1 maps, which include the natural quotient maps via a finite group action, and prove that they preserve the asymptotic dimension.
AU - Austin, Kyle
AU - Virk, Ziga
ID - 521
JF - Topology and its Applications
SN - 01668641
TI - Higson compactification and dimension raising
VL - 215
ER -
TY - JOUR
AB - We study robust properties of zero sets of continuous maps f: X → ℝn. Formally, we analyze the family Z< r(f) := (g-1(0): ||g - f|| < r) of all zero sets of all continuous maps g closer to f than r in the max-norm. All of these sets are outside A := (x: |f(x)| ≥ r) and we claim that Z< r(f) is fully determined by A and an element of a certain cohomotopy group which (by a recent result) is computable whenever the dimension of X is at most 2n - 3. By considering all r > 0 simultaneously, the pointed cohomotopy groups form a persistence module-a structure leading to persistence diagrams as in the case of persistent homology or well groups. Eventually, we get a descriptor of persistent robust properties of zero sets that has better descriptive power (Theorem A) and better computability status (Theorem B) than the established well diagrams. Moreover, if we endow every point of each zero set with gradients of the perturbation, the robust description of the zero sets by elements of cohomotopy groups is in some sense the best possible (Theorem C).
AU - Franek, Peter
AU - Krcál, Marek
ID - 568
IS - 2
JF - Homology, Homotopy and Applications
SN - 15320073
TI - Persistence of zero sets
VL - 19
ER -
TY - CHAP
AB - Different distance metrics produce Voronoi diagrams with different properties. It is a well-known that on the (real) 2D plane or even on any 3D plane, a Voronoi diagram (VD) based on the Euclidean distance metric produces convex Voronoi regions. In this paper, we first show that this metric produces a persistent VD on the 2D digital plane, as it comprises digitally convex Voronoi regions and hence correctly approximates the corresponding VD on the 2D real plane. Next, we show that on a 3D digital plane D, the Euclidean metric spanning over its voxel set does not guarantee a digital VD which is persistent with the real-space VD. As a solution, we introduce a novel concept of functional-plane-convexity, which is ensured by the Euclidean metric spanning over the pedal set of D. Necessary proofs and some visual result have been provided to adjudge the merit and usefulness of the proposed concept.
AU - Biswas, Ranita
AU - Bhowmick, Partha
ID - 5803
SN - 0302-9743
T2 - Combinatorial image analysis
TI - Construction of persistent Voronoi diagram on 3D digital plane
VL - 10256
ER -
TY - JOUR
AB - We answer a question of M. Gromov on the waist of the unit ball.
AU - Akopyan, Arseniy
AU - Karasev, Roman
ID - 707
IS - 4
JF - Bulletin of the London Mathematical Society
SN - 00246093
TI - A tight estimate for the waist of the ball
VL - 49
ER -
TY - JOUR
AB - Mapping every simplex in the Delaunay mosaic of a discrete point set to the radius of the smallest empty circumsphere gives a generalized discrete Morse function. Choosing the points from a Poisson point process in ℝ n , we study the expected number of simplices in the Delaunay mosaic as well as the expected number of critical simplices and nonsingular intervals in the corresponding generalized discrete gradient. Observing connections with other probabilistic models, we obtain precise expressions for the expected numbers in low dimensions. In particular, we obtain the expected numbers of simplices in the Poisson–Delaunay mosaic in dimensions n ≤ 4.
AU - Edelsbrunner, Herbert
AU - Nikitenko, Anton
AU - Reitzner, Matthias
ID - 718
IS - 3
JF - Advances in Applied Probability
SN - 00018678
TI - Expected sizes of poisson Delaunay mosaics and their discrete Morse functions
VL - 49
ER -
TY - JOUR
AB - We generalize Brazas’ topology on the fundamental group to the whole universal path space X˜ i.e., to the set of homotopy classes of all based paths. We develop basic properties of the new notion and provide a complete comparison of the obtained topology with the established topologies, in particular with the Lasso topology and the CO topology, i.e., the topology that is induced by the compact-open topology. It turns out that the new topology is the finest topology contained in the CO topology, for which the action of the fundamental group on the universal path space is a continuous group action.
AU - Virk, Ziga
AU - Zastrow, Andreas
ID - 737
JF - Topology and its Applications
SN - 01668641
TI - A new topology on the universal path space
VL - 231
ER -
TY - JOUR
AB - We consider the problem of reachability in pushdown graphs. We study the problem for pushdown graphs with constant treewidth. Even for pushdown graphs with treewidth 1, for the reachability problem we establish the following: (i) the problem is PTIME-complete, and (ii) any subcubic algorithm for the problem would contradict the k-clique conjecture and imply faster combinatorial algorithms for cliques in graphs.
AU - Chatterjee, Krishnendu
AU - Osang, Georg F
ID - 1065
JF - Information Processing Letters
SN - 00200190
TI - Pushdown reachability with constant treewidth
VL - 122
ER -
TY - JOUR
AB - Given a finite set of points in Rn and a radius parameter, we study the Čech, Delaunay–Čech, Delaunay (or alpha), and Wrap complexes in the light of generalized discrete Morse theory. Establishing the Čech and Delaunay complexes as sublevel sets of generalized discrete Morse functions, we prove that the four complexes are simple-homotopy equivalent by a sequence of simplicial collapses, which are explicitly described by a single discrete gradient field.
AU - Bauer, Ulrich
AU - Edelsbrunner, Herbert
ID - 1072
IS - 5
JF - Transactions of the American Mathematical Society
TI - The Morse theory of Čech and delaunay complexes
VL - 369
ER -
TY - THES
AB - The main objects considered in the present work are simplicial and CW-complexes with vertices forming a random point cloud. In particular, we consider a Poisson point process in R^n and study Delaunay and Voronoi complexes of the first and higher orders and weighted Delaunay complexes obtained as sections of Delaunay complexes, as well as the Čech complex. Further, we examine theDelaunay complex of a Poisson point process on the sphere S^n, as well as of a uniform point cloud, which is equivalent to the convex hull, providing a connection to the theory of random polytopes. Each of the complexes in question can be endowed with a radius function, which maps its cells to the radii of appropriately chosen circumspheres, called the radius of the cell. Applying and developing discrete Morse theory for these functions, joining it together with probabilistic and sometimes analytic machinery, and developing several integral geometric tools, we aim at getting the distributions of circumradii of typical cells. For all considered complexes, we are able to generalize and obtain up to constants the distribution of radii of typical intervals of all types. In low dimensions the constants can be computed explicitly, thus providing the explicit expressions for the expected numbers of cells. In particular, it allows to find the expected density of simplices of every dimension for a Poisson point process in R^4, whereas the result for R^3 was known already in 1970's.
AU - Nikitenko, Anton
ID - 6287
TI - Discrete Morse theory for random complexes
ER -
TY - CONF
AB - We show that the framework of topological data analysis can be extended from metrics to general Bregman divergences, widening the scope of possible applications. Examples are the Kullback - Leibler divergence, which is commonly used for comparing text and images, and the Itakura - Saito divergence, popular for speech and sound. In particular, we prove that appropriately generalized čech and Delaunay (alpha) complexes capture the correct homotopy type, namely that of the corresponding union of Bregman balls. Consequently, their filtrations give the correct persistence diagram, namely the one generated by the uniformly growing Bregman balls. Moreover, we show that unlike the metric setting, the filtration of Vietoris-Rips complexes may fail to approximate the persistence diagram. We propose algorithms to compute the thus generalized čech, Vietoris-Rips and Delaunay complexes and experimentally test their efficiency. Lastly, we explain their surprisingly good performance by making a connection with discrete Morse theory.
AU - Edelsbrunner, Herbert
AU - Wagner, Hubert
ID - 688
SN - 18688969
TI - Topological data analysis with Bregman divergences
VL - 77
ER -
TY - JOUR
AB - We study the lengths of curves passing through a fixed number of points on the boundary of a convex shape in the plane. We show that, for any convex shape K, there exist four points on the boundary of K such that the length of any curve passing through these points is at least half of the perimeter of K. It is also shown that the same statement does not remain valid with the additional constraint that the points are extreme points of K. Moreover, the factor ½ cannot be achieved with any fixed number of extreme points. We conclude the paper with a few other inequalities related to the perimeter of a convex shape.
AU - Akopyan, Arseniy
AU - Vysotsky, Vladislav
ID - 909
IS - 7
JF - The American Mathematical Monthly
SN - 00029890
TI - On the lengths of curves passing through boundary points of a planar convex shape
VL - 124
ER -
TY - JOUR
AB - We introduce the Voronoi functional of a triangulation of a finite set of points in the Euclidean plane and prove that among all geometric triangulations of the point set, the Delaunay triangulation maximizes the functional. This result neither extends to topological triangulations in the plane nor to geometric triangulations in three and higher dimensions.
AU - Edelsbrunner, Herbert
AU - Glazyrin, Alexey
AU - Musin, Oleg
AU - Nikitenko, Anton
ID - 1173
IS - 5
JF - Combinatorica
SN - 02099683
TI - The Voronoi functional is maximized by the Delaunay triangulation in the plane
VL - 37
ER -
TY - JOUR
AB - In this article we define an algebraic vertex of a generalized polyhedron and show that the set of algebraic vertices is the smallest set of points needed to define the polyhedron. We prove that the indicator function of a generalized polytope P is a linear combination of indicator functions of simplices whose vertices are algebraic vertices of P. We also show that the indicator function of any generalized polyhedron is a linear combination, with integer coefficients, of indicator functions of cones with apices at algebraic vertices and line-cones. The concept of an algebraic vertex is closely related to the Fourier–Laplace transform. We show that a point v is an algebraic vertex of a generalized polyhedron P if and only if the tangent cone of P, at v, has non-zero Fourier–Laplace transform.
AU - Akopyan, Arseniy
AU - Bárány, Imre
AU - Robins, Sinai
ID - 1180
JF - Advances in Mathematics
SN - 00018708
TI - Algebraic vertices of non-convex polyhedra
VL - 308
ER -
TY - JOUR
AB - We introduce a multiscale topological description of the Megaparsec web-like cosmic matter distribution. Betti numbers and topological persistence offer a powerful means of describing the rich connectivity structure of the cosmic web and of its multiscale arrangement of matter and galaxies. Emanating from algebraic topology and Morse theory, Betti numbers and persistence diagrams represent an extension and deepening of the cosmologically familiar topological genus measure and the related geometric Minkowski functionals. In addition to a description of the mathematical background, this study presents the computational procedure for computing Betti numbers and persistence diagrams for density field filtrations. The field may be computed starting from a discrete spatial distribution of galaxies or simulation particles. The main emphasis of this study concerns an extensive and systematic exploration of the imprint of different web-like morphologies and different levels of multiscale clustering in the corresponding computed Betti numbers and persistence diagrams. To this end, we use Voronoi clustering models as templates for a rich variety of web-like configurations and the fractal-like Soneira-Peebles models exemplify a range of multiscale configurations. We have identified the clear imprint of cluster nodes, filaments, walls, and voids in persistence diagrams, along with that of the nested hierarchy of structures in multiscale point distributions. We conclude by outlining the potential of persistent topology for understanding the connectivity structure of the cosmic web, in large simulations of cosmic structure formation and in the challenging context of the observed galaxy distribution in large galaxy surveys.
AU - Pranav, Pratyush
AU - Edelsbrunner, Herbert
AU - Van De Weygaert, Rien
AU - Vegter, Gert
AU - Kerber, Michael
AU - Jones, Bernard
AU - Wintraecken, Mathijs
ID - 1022
IS - 4
JF - Monthly Notices of the Royal Astronomical Society
SN - 00358711
TI - The topology of the cosmic web in terms of persistent Betti numbers
VL - 465
ER -
TY - JOUR
AB - We introduce planar matchings on directed pseudo-line arrangements, which yield a planar set of pseudo-line segments such that only matching-partners are adjacent. By translating the planar matching problem into a corresponding stable roommates problem we show that such matchings always exist. Using our new framework, we establish, for the first time, a complete, rigorous definition of weighted straight skeletons, which are based on a so-called wavefront propagation process. We present a generalized and unified approach to treat structural changes in the wavefront that focuses on the restoration of weak planarity by finding planar matchings.
AU - Biedl, Therese
AU - Huber, Stefan
AU - Palfrader, Peter
ID - 481
IS - 3-4
JF - International Journal of Computational Geometry and Applications
TI - Planar matchings for weighted straight skeletons
VL - 26
ER -
TY - JOUR
AB - Phat is an open-source C. ++ library for the computation of persistent homology by matrix reduction, targeted towards developers of software for topological data analysis. We aim for a simple generic design that decouples algorithms from data structures without sacrificing efficiency or user-friendliness. We provide numerous different reduction strategies as well as data types to store and manipulate the boundary matrix. We compare the different combinations through extensive experimental evaluation and identify optimization techniques that work well in practical situations. We also compare our software with various other publicly available libraries for persistent homology.
AU - Bauer, Ulrich
AU - Kerber, Michael
AU - Reininghaus, Jan
AU - Wagner, Hubert
ID - 1433
JF - Journal of Symbolic Computation
SN - 07477171
TI - Phat - Persistent homology algorithms toolbox
VL - 78
ER -
TY - CHAP
AB - Discretization of sphere in the integer space follows a particular discretization scheme, which, in principle, conforms to some topological model. This eventually gives rise to interesting topological properties of a discrete spherical surface, which need to be investigated for its analytical characterization. This paper presents some novel results on the local topological properties of the naive model of discrete sphere. They follow from the bijection of each quadraginta octant of naive sphere with its projection map called f -map on the corresponding functional plane and from the characterization of certain jumps in the f-map. As an application, we have shown how these properties can be used in designing an efficient reconstruction algorithm for a naive spherical surface from an input voxel set when it is sparse or noisy.
AU - Sen, Nabhasmita
AU - Biswas, Ranita
AU - Bhowmick, Partha
ID - 5805
SN - 0302-9743
T2 - Computational Topology in Image Context
TI - On some local topological properties of naive discrete sphere
VL - 9667
ER -
TY - CONF
AB - Although the concept of functional plane for naive plane is studied and reported in the literature in great detail, no similar study is yet found for naive sphere. This article exposes the first study in this line, opening up further prospects of analyzing the topological properties of sphere in the discrete space. We show that each quadraginta octant Q of a naive sphere forms a bijection with its projected pixel set on a unique coordinate plane, which thereby serves as the functional plane of Q, and hence gives rise to merely mono-jumps during back projection. The other two coordinate planes serve as para-functional and dia-functional planes for Q, as the former is ‘mono-jumping’ but not bijective, whereas the latter holds neither of the two. Owing to this, the quadraginta octants form symmetry groups and subgroups with equivalent jump conditions. We also show a potential application in generating a special class of discrete 3D circles based on back projection and jump bridging by Steiner voxels. A circle in this class possesses 4-symmetry, uniqueness, and bounded distance from the underlying real sphere and real plane.
AU - Biswas, Ranita
AU - Bhowmick, Partha
ID - 5806
SN - 0302-9743
T2 - Discrete Geometry for Computer Imagery
TI - On functionality of quadraginta octants of naive sphere with application to circle drawing
VL - 9647
ER -
TY - CHAP
AB - A discrete spherical circle is a topologically well-connected 3D circle in the integer space, which belongs to a discrete sphere as well as a discrete plane. It is one of the most important 3D geometric primitives, but has not possibly yet been studied up to its merit. This paper is a maiden exposition of some of its elementary properties, which indicates a sense of its profound theoretical prospects in the framework of digital geometry. We have shown how different types of discretization can lead to forbidden and admissible classes, when one attempts to define the discretization of a spherical circle in terms of intersection between a discrete sphere and a discrete plane. Several fundamental theoretical results have been presented, the algorithm for construction of discrete spherical circles has been discussed, and some test results have been furnished to demonstrate its practicality and usefulness.
AU - Biswas, Ranita
AU - Bhowmick, Partha
AU - Brimkov, Valentin E.
ID - 5809
SN - 0302-9743
T2 - Combinatorial image analysis
TI - On the connectivity and smoothness of discrete spherical circles
VL - 9448
ER -
TY - JOUR
AB - We study the usefulness of two most prominent publicly available rigorous ODE integrators: one provided by the CAPD group (capd.ii.uj.edu.pl), the other based on the COSY Infinity project (cosyinfinity.org). Both integrators are capable of handling entire sets of initial conditions and provide tight rigorous outer enclosures of the images under a time-T map. We conduct extensive benchmark computations using the well-known Lorenz system, and compare the computation time against the final accuracy achieved. We also discuss the effect of a few technical parameters, such as the order of the numerical integration method, the value of T, and the phase space resolution. We conclude that COSY may provide more precise results due to its ability of avoiding the variable dependency problem. However, the overall cost of computations conducted using CAPD is typically lower, especially when intervals of parameters are involved. Moreover, access to COSY is limited (registration required) and the rigorous ODE integrators are not publicly available, while CAPD is an open source free software project. Therefore, we recommend the latter integrator for this kind of computations. Nevertheless, proper choice of the various integration parameters turns out to be of even greater importance than the choice of the integrator itself. © 2016 IMACS. Published by Elsevier B.V. All rights reserved.
AU - Miyaji, Tomoyuki
AU - Pilarczyk, Pawel
AU - Gameiro, Marcio
AU - Kokubu, Hiroshi
AU - Mischaikow, Konstantin
ID - 1149
JF - Applied Numerical Mathematics
TI - A study of rigorous ODE integrators for multi scale set oriented computations
VL - 107
ER -
TY - JOUR
AB - We study the discrepancy of jittered sampling sets: such a set P⊂ [0,1]d is generated for fixed m∈ℕ by partitioning [0,1]d into md axis aligned cubes of equal measure and placing a random point inside each of the N=md cubes. We prove that, for N sufficiently large, 1/10 d/N1/2+1/2d ≤EDN∗(P)≤ √d(log N) 1/2/N1/2+1/2d, where the upper bound with an unspecified constant Cd was proven earlier by Beck. Our proof makes crucial use of the sharp Dvoretzky-Kiefer-Wolfowitz inequality and a suitably taylored Bernstein inequality; we have reasons to believe that the upper bound has the sharp scaling in N. Additional heuristics suggest that jittered sampling should be able to improve known bounds on the inverse of the star-discrepancy in the regime N≳dd. We also prove a partition principle showing that every partition of [0,1]d combined with a jittered sampling construction gives rise to a set whose expected squared L2-discrepancy is smaller than that of purely random points.
AU - Pausinger, Florian
AU - Steinerberger, Stefan
ID - 1617
JF - Journal of Complexity
TI - On the discrepancy of jittered sampling
VL - 33
ER -
TY - JOUR
AB - We introduce a modification of the classic notion of intrinsic volume using persistence moments of height functions. Evaluating the modified first intrinsic volume on digital approximations of a compact body with smoothly embedded boundary in Rn, we prove convergence to the first intrinsic volume of the body as the resolution of the approximation improves. We have weaker results for the other modified intrinsic volumes, proving they converge to the corresponding intrinsic volumes of the n-dimensional unit ball.
AU - Edelsbrunner, Herbert
AU - Pausinger, Florian
ID - 1662
JF - Advances in Mathematics
TI - Approximation and convergence of the intrinsic volume
VL - 287
ER -
TY - JOUR
AB - A framework fo r extracting features in 2D transient flows, based on the acceleration field to ensure Galilean invariance is proposed in this paper. The minima of the acceleration magnitude (a superset of acceleration zeros) are extracted and discriminated into vortices and saddle points, based on the spectral properties of the velocity Jacobian. The extraction of topological features is performed with purely combinatorial algorithms from discrete computational topology. The feature points are prioritized with persistence, as a physically meaningful importance measure. These feature points are tracked in time with a robust algorithm for tracking features. Thus, a space-time hierarchy of the minima is built and vortex merging events are detected. We apply the acceleration feature extraction strategy to three two-dimensional shear flows: (1) an incompressible periodic cylinder wake, (2) an incompressible planar mixing layer and (3) a weakly compressible planar jet. The vortex-like acceleration feature points are shown to be well aligned with acceleration zeros, maxima of the vorticity magnitude, minima of the pressure field and minima of λ2.
AU - Kasten, Jens
AU - Reininghaus, Jan
AU - Hotz, Ingrid
AU - Hege, Hans
AU - Noack, Bernd
AU - Daviller, Guillaume
AU - Morzyński, Marek
ID - 1216
IS - 1
JF - Archives of Mechanics
TI - Acceleration feature points of unsteady shear flows
VL - 68
ER -
TY - JOUR
AB - We consider packings of congruent circles on a square flat torus, i.e., periodic (w.r.t. a square lattice) planar circle packings, with the maximal circle radius. This problem is interesting due to a practical reason—the problem of “super resolution of images.” We have found optimal arrangements for N=6, 7 and 8 circles. Surprisingly, for the case N=7 there are three different optimal arrangements. Our proof is based on a computer enumeration of toroidal irreducible contact graphs.
AU - Musin, Oleg
AU - Nikitenko, Anton
ID - 1222
IS - 1
JF - Discrete & Computational Geometry
TI - Optimal packings of congruent circles on a square flat torus
VL - 55
ER -
TY - CONF
AB - Bitmap images of arbitrary dimension may be formally perceived as unions of m-dimensional boxes aligned with respect to a rectangular grid in ℝm. Cohomology and homology groups are well known topological invariants of such sets. Cohomological operations, such as the cup product, provide higher-order algebraic topological invariants, especially important for digital images of dimension higher than 3. If such an operation is determined at the level of simplicial chains [see e.g. González-Díaz, Real, Homology, Homotopy Appl, 2003, 83-93], then it is effectively computable. However, decomposing a cubical complex into a simplicial one deleteriously affects the efficiency of such an approach. In order to avoid this overhead, a direct cubical approach was applied in [Pilarczyk, Real, Adv. Comput. Math., 2015, 253-275] for the cup product in cohomology, and implemented in the ChainCon software package [http://www.pawelpilarczyk.com/chaincon/]. We establish a formula for the Steenrod square operations [see Steenrod, Annals of Mathematics. Second Series, 1947, 290-320] directly at the level of cubical chains, and we prove the correctness of this formula. An implementation of this formula is programmed in C++ within the ChainCon software framework. We provide a few examples and discuss the effectiveness of this approach. One specific application follows from the fact that Steenrod squares yield tests for the topological extension problem: Can a given map A → Sd to a sphere Sd be extended to a given super-complex X of A? In particular, the ROB-SAT problem, which is to decide for a given function f: X → ℝm and a value r > 0 whether every g: X → ℝm with ∥g - f ∥∞ ≤ r has a root, reduces to the extension problem.
AU - Krcál, Marek
AU - Pilarczyk, Pawel
ID - 1237
TI - Computation of cubical Steenrod squares
VL - 9667
ER -
TY - JOUR
AB - We use rigorous numerical techniques to compute a lower bound for the exponent of expansivity outside a neighborhood of the critical point for thousands of intervals of parameter values in the quadratic family. We first compute a radius of the critical neighborhood outside which the map is uniformly expanding. This radius is taken as small as possible, yet large enough for our numerical procedure to succeed in proving that the expansivity exponent outside this neighborhood is positive. Then, for each of the intervals, we compute a lower bound for this expansivity exponent, valid for all the parameters in that interval. We illustrate and study the distribution of the radii and the expansivity exponents. The results of our computations are mathematically rigorous. The source code of the software and the results of the computations are made publicly available at http://www.pawelpilarczyk.com/quadratic/.
AU - Golmakani, Ali
AU - Luzzatto, Stefano
AU - Pilarczyk, Pawel
ID - 1254
IS - 2
JF - Experimental Mathematics
TI - Uniform expansivity outside a critical neighborhood in the quadratic family
VL - 25
ER -
TY - JOUR
AB - We study different means to extend offsetting based on skeletal structures beyond the well-known constant-radius and mitered offsets supported by Voronoi diagrams and straight skeletons, for which the orthogonal distance of offset elements to their respective input elements is constant and uniform over all input elements. Our main contribution is a new geometric structure, called variable-radius Voronoi diagram, which supports the computation of variable-radius offsets, i.e., offsets whose distance to the input is allowed to vary along the input. We discuss properties of this structure and sketch a prototype implementation that supports the computation of variable-radius offsets based on this new variant of Voronoi diagrams.
AU - Held, Martin
AU - Huber, Stefan
AU - Palfrader, Peter
ID - 1272
IS - 5
JF - Computer-Aided Design and Applications
TI - Generalized offsetting of planar structures using skeletons
VL - 13
ER -