Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
240 Publications
2015 | Thesis | IST-REx-ID: 1399
Pausinger, F. (2015). On the approximation of intrinsic volumes. IST Austria.
View
| Files available
2015 | Journal Article | IST-REx-ID: 1805
Attali, D., Bauer, U., Devillers, O., Glisse, M., & Lieutier, A. (2015). Homological reconstruction and simplification in R3. Computational Geometry: Theory and Applications. Elsevier. https://doi.org/10.1016/j.comgeo.2014.08.010
View
| Files available
| DOI
2015 | Journal Article | IST-REx-ID: 1793 |

Symonova, O., Topp, C., & Edelsbrunner, H. (2015). DynamicRoots: A software platform for the reconstruction and analysis of growing plant roots. PLoS One. Public Library of Science. https://doi.org/10.1371/journal.pone.0127657
View
| Files available
| DOI
2015 | Research Data Reference | IST-REx-ID: 9737
Symonova, O., Topp, C., & Edelsbrunner, H. (2015). Root traits computed by DynamicRoots for the maize root shown in fig 2. Public Library of Science. https://doi.org/10.1371/journal.pone.0127657.s001
View
| Files available
| DOI
2014 | Book Chapter | IST-REx-ID: 10817
Günther, D., Reininghaus, J., Seidel, H.-P., & Weinkauf, T. (2014). Notes on the simplification of the Morse-Smale complex. In P.-T. Bremer, I. Hotz, V. Pascucci, & R. Peikert (Eds.), Topological Methods in Data Analysis and Visualization III. (pp. 135–150). Cham: Springer Nature. https://doi.org/10.1007/978-3-319-04099-8_9
View
| DOI
2014 | Conference Paper | IST-REx-ID: 10886
Zobel, V., Reininghaus, J., & Hotz, I. (2014). Visualization of two-dimensional symmetric positive definite tensor fields using the heat kernel signature. In Topological Methods in Data Analysis and Visualization III (pp. 249–262). Springer. https://doi.org/10.1007/978-3-319-04099-8_16
View
| DOI
2014 | Book Chapter | IST-REx-ID: 10893
Kasten, J., Reininghaus, J., Reich, W., & Scheuermann, G. (2014). Toward the extraction of saddle periodic orbits. In P.-T. Bremer, I. Hotz, V. Pascucci, & R. Peikert (Eds.), Topological Methods in Data Analysis and Visualization III (Vol. 1, pp. 55–69). Cham: Springer. https://doi.org/10.1007/978-3-319-04099-8_4
View
| DOI
2014 | Conference Paper | IST-REx-ID: 10894
Bauer, U., Kerber, M., Reininghaus, J., & Wagner, H. (2014). PHAT – Persistent Homology Algorithms Toolbox. In ICMS 2014: International Congress on Mathematical Software (Vol. 8592, pp. 137–143). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-44199-2_24
View
| Files available
| DOI
2014 | Journal Article | IST-REx-ID: 1816 |

Huber, S., Held, M., Meerwald, P., & Kwitt, R. (2014). Topology-preserving watermarking of vector graphics. International Journal of Computational Geometry and Applications. World Scientific Publishing. https://doi.org/10.1142/S0218195914500034
View
| Files available
| DOI
2014 | Journal Article | IST-REx-ID: 1842 |

Cibulka, J., Gao, P., Krcál, M., Valla, T., & Valtr, P. (2014). On the geometric ramsey number of outerplanar graphs. Discrete & Computational Geometry. Springer. https://doi.org/10.1007/s00454-014-9646-x
View
| DOI
| Download Submitted Version (ext.)