Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
237 Publications
2021 | Journal Article | IST-REx-ID: 9317 |

Edelsbrunner, H., & Osang, G. F. (2021). The multi-cover persistence of Euclidean balls. Discrete and Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-021-00281-9
View
| Files available
| DOI
2021 | Conference Paper | IST-REx-ID: 9345 |

Edelsbrunner, H., Heiss, T., Kurlin , V., Smith, P., & Wintraecken, M. (2021). The density fingerprint of a periodic point set. In 37th International Symposium on Computational Geometry (SoCG 2021) (Vol. 189, p. 32:1-32:16). Virtual: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2021.32
View
| Files available
| DOI
2021 | Conference Paper | IST-REx-ID: 9441 |

Boissonnat, J.-D., Kachanovich, S., & Wintraecken, M. (2021). Tracing isomanifolds in Rd in time polynomial in d using Coxeter-Freudenthal-Kuhn triangulations. In 37th International Symposium on Computational Geometry (SoCG 2021) (Vol. 189, p. 17:1-17:16). Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2021.17
View
| Files available
| DOI
2021 | Journal Article | IST-REx-ID: 9602 |

Pach, J., & Tomon, I. (2021). Erdős-Hajnal-type results for monotone paths. Journal of Combinatorial Theory. Series B. Elsevier. https://doi.org/10.1016/j.jctb.2021.05.004
View
| Files available
| DOI
2021 | Conference Paper | IST-REx-ID: 9604 |

Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., & Saghafian, M. (2021). Counting cells of order-k voronoi tessellations in ℝ3 with morse theory. In Leibniz International Proceedings in Informatics (Vol. 189). Online: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2021.16
View
| Files available
| DOI