@phdthesis{14821, author = {Chiossi, Heloisa}, issn = {2663 - 337X}, pages = {89}, publisher = {Institute of Science and Technology Austria}, title = {{Adaptive hierarchical representations in the hippocampus}}, doi = {10.15479/at:ista:14821}, year = {2024}, } @article{12862, abstract = {Despite the considerable progress of in vivo neural recording techniques, inferring the biophysical mechanisms underlying large scale coordination of brain activity from neural data remains challenging. One obstacle is the difficulty to link high dimensional functional connectivity measures to mechanistic models of network activity. We address this issue by investigating spike-field coupling (SFC) measurements, which quantify the synchronization between, on the one hand, the action potentials produced by neurons, and on the other hand mesoscopic “field” signals, reflecting subthreshold activities at possibly multiple recording sites. As the number of recording sites gets large, the amount of pairwise SFC measurements becomes overwhelmingly challenging to interpret. We develop Generalized Phase Locking Analysis (GPLA) as an interpretable dimensionality reduction of this multivariate SFC. GPLA describes the dominant coupling between field activity and neural ensembles across space and frequencies. We show that GPLA features are biophysically interpretable when used in conjunction with appropriate network models, such that we can identify the influence of underlying circuit properties on these features. We demonstrate the statistical benefits and interpretability of this approach in various computational models and Utah array recordings. The results suggest that GPLA, used jointly with biophysical modeling, can help uncover the contribution of recurrent microcircuits to the spatio-temporal dynamics observed in multi-channel experimental recordings.}, author = {Safavi, Shervin and Panagiotaropoulos, Theofanis I. and Kapoor, Vishal and Ramirez Villegas, Juan F and Logothetis, Nikos K. and Besserve, Michel}, issn = {1553-7358}, journal = {PLoS Computational Biology}, number = {4}, publisher = {Public Library of Science}, title = {{Uncovering the organization of neural circuits with Generalized Phase Locking Analysis}}, doi = {10.1371/journal.pcbi.1010983}, volume = {19}, year = {2023}, } @article{14314, abstract = {The execution of cognitive functions requires coordinated circuit activity across different brain areas that involves the associated firing of neuronal assemblies. Here, we tested the circuit mechanism behind assembly interactions between the hippocampus and the medial prefrontal cortex (mPFC) of adult rats by recording neuronal populations during a rule-switching task. We identified functionally coupled CA1-mPFC cells that synchronized their activity beyond that expected from common spatial coding or oscillatory firing. When such cell pairs fired together, the mPFC cell strongly phase locked to CA1 theta oscillations and maintained consistent theta firing phases, independent of the theta timing of their CA1 counterpart. These functionally connected CA1-mPFC cells formed interconnected assemblies. While firing together with their CA1 assembly partners, mPFC cells fired along specific theta sequences. Our results suggest that upregulated theta oscillatory firing of mPFC cells can signal transient interactions with specific CA1 assemblies, thus enabling distributed computations.}, author = {Nardin, Michele and Käfer, Karola and Stella, Federico and Csicsvari, Jozsef L}, issn = {2211-1247}, journal = {Cell Reports}, number = {9}, publisher = {Elsevier}, title = {{Theta oscillations as a substrate for medial prefrontal-hippocampal assembly interactions}}, doi = {10.1016/j.celrep.2023.113015}, volume = {42}, year = {2023}, } @article{14656, abstract = {Although much is known about how single neurons in the hippocampus represent an animal's position, how circuit interactions contribute to spatial coding is less well understood. Using a novel statistical estimator and theoretical modeling, both developed in the framework of maximum entropy models, we reveal highly structured CA1 cell-cell interactions in male rats during open field exploration. The statistics of these interactions depend on whether the animal is in a familiar or novel environment. In both conditions the circuit interactions optimize the encoding of spatial information, but for regimes that differ in the informativeness of their spatial inputs. This structure facilitates linear decodability, making the information easy to read out by downstream circuits. Overall, our findings suggest that the efficient coding hypothesis is not only applicable to individual neuron properties in the sensory periphery, but also to neural interactions in the central brain.}, author = {Nardin, Michele and Csicsvari, Jozsef L and Tkačik, Gašper and Savin, Cristina}, issn = {1529-2401}, journal = {The Journal of Neuroscience}, number = {48}, pages = {8140--8156}, publisher = {Society of Neuroscience}, title = {{The structure of hippocampal CA1 interactions optimizes spatial coding across experience}}, doi = {10.1523/JNEUROSCI.0194-23.2023}, volume = {43}, year = {2023}, } @article{11951, abstract = {The mammalian hippocampal formation (HF) plays a key role in several higher brain functions, such as spatial coding, learning and memory. Its simple circuit architecture is often viewed as a trisynaptic loop, processing input originating from the superficial layers of the entorhinal cortex (EC) and sending it back to its deeper layers. Here, we show that excitatory neurons in layer 6b of the mouse EC project to all sub-regions comprising the HF and receive input from the CA1, thalamus and claustrum. Furthermore, their output is characterized by unique slow-decaying excitatory postsynaptic currents capable of driving plateau-like potentials in their postsynaptic targets. Optogenetic inhibition of the EC-6b pathway affects spatial coding in CA1 pyramidal neurons, while cell ablation impairs not only acquisition of new spatial memories, but also degradation of previously acquired ones. Our results provide evidence of a functional role for cortical layer 6b neurons in the adult brain.}, author = {Ben Simon, Yoav and Käfer, Karola and Velicky, Philipp and Csicsvari, Jozsef L and Danzl, Johann G and Jonas, Peter M}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Physics and Astronomy, General Biochemistry, Genetics and Molecular Biology, General Chemistry, Multidisciplinary}, publisher = {Springer Nature}, title = {{A direct excitatory projection from entorhinal layer 6b neurons to the hippocampus contributes to spatial coding and memory}}, doi = {10.1038/s41467-022-32559-8}, volume = {13}, year = {2022}, } @article{12149, abstract = {Editorial on the Research Topic}, author = {Gambino, Giuditta and Bhik-Ghanie, Rebecca and Giglia, Giuseppe and Puig, M. Victoria and Ramirez Villegas, Juan F and Zaldivar, Daniel}, issn = {1662-5110}, journal = {Frontiers in Neural Circuits}, keywords = {Cellular and Molecular Neuroscience, Cognitive Neuroscience, Sensory Systems, Neuroscience (miscellaneous)}, publisher = {Frontiers Media}, title = {{Editorial: Neuromodulatory ascending systems: Their influence at the microscopic and macroscopic levels}}, doi = {10.3389/fncir.2022.1028154}, volume = {16}, year = {2022}, } @phdthesis{11932, abstract = {The ability to form and retrieve memories is central to survival. In mammals, the hippocampus is a brain region essential to the acquisition and consolidation of new memories. It is also involved in keeping track of one’s position in space and aids navigation. Although this space-memory has been a source of contradiction, evidence supports the view that the role of the hippocampus in navigation is memory, thanks to the formation of cognitive maps. First introduced by Tolman in 1948, cognitive maps are generally used to organize experiences in memory; however, the detailed mechanisms by which these maps are formed and stored are not yet agreed upon. Some influential theories describe this process as involving three fundamental steps: initial encoding by the hippocampus, interactions between the hippocampus and other cortical areas, and long-term extra-hippocampal consolidation. In this thesis, I will show how the investigation of cognitive maps of space helped to shed light on each of these three memory processes. The first study included in this thesis deals with the initial encoding of spatial memories in the hippocampus. Much is known about encoding at the level of single cells, but less about their co-activity or joint contribution to the encoding of novel spatial information. I will describe the structure of an interaction network that allows for efficient encoding of noisy spatial information during the first exploration of a novel environment. The second study describes the interactions between the hippocampus and the prefrontal cortex (PFC), two areas directly and indirectly connected. It is known that the PFC, in concert with the hippocampus, is involved in various processes, including memory storage and spatial navigation. Nonetheless, the detailed mechanisms by which PFC receives information from the hippocampus are not clear. I will show how a transient improvement in theta phase locking of PFC cells enables interactions of cell pairs across the two regions. The third study describes the learning of behaviorally-relevant spatial locations in the hippocampus and the medial entorhinal cortex. I will show how the accumulation of firing around goal locations, a correlate of learning, can shed light on the transition from short- to long-term spatial memories and the speed of consolidation in different brain areas. The studies included in this thesis represent the main scientific contributions of my Ph.D. They involve statistical analyses and models of neural responses of cells in different brain areas of rats executing spatial tasks. I will conclude the thesis by discussing the impact of the findings on principles of memory formation and retention, including the mechanisms, the speed, and the duration of these processes.}, author = {Nardin, Michele}, issn = {2663-337X}, pages = {136}, publisher = {Institute of Science and Technology Austria}, title = {{On the encoding, transfer, and consolidation of spatial memories}}, doi = {10.15479/at:ista:11932}, year = {2022}, } @article{10614, abstract = {The infiltration of immune cells into tissues underlies the establishment of tissue-resident macrophages and responses to infections and tumors. Yet the mechanisms immune cells utilize to negotiate tissue barriers in living organisms are not well understood, and a role for cortical actin has not been examined. Here, we find that the tissue invasion of Drosophila macrophages, also known as plasmatocytes or hemocytes, utilizes enhanced cortical F-actin levels stimulated by the Drosophila member of the fos proto oncogene transcription factor family (Dfos, Kayak). RNA sequencing analysis and live imaging show that Dfos enhances F-actin levels around the entire macrophage surface by increasing mRNA levels of the membrane spanning molecular scaffold tetraspanin TM4SF, and the actin cross-linking filamin Cheerio, which are themselves required for invasion. Both the filamin and the tetraspanin enhance the cortical activity of Rho1 and the formin Diaphanous and thus the assembly of cortical actin, which is a critical function since expressing a dominant active form of Diaphanous can rescue the Dfos macrophage invasion defect. In vivo imaging shows that Dfos enhances the efficiency of the initial phases of macrophage tissue entry. Genetic evidence argues that this Dfos-induced program in macrophages counteracts the constraint produced by the tension of surrounding tissues and buffers the properties of the macrophage nucleus from affecting tissue entry. We thus identify strengthening the cortical actin cytoskeleton through Dfos as a key process allowing efficient forward movement of an immune cell into surrounding tissues. }, author = {Belyaeva, Vera and Wachner, Stephanie and György, Attila and Emtenani, Shamsi and Gridchyn, Igor and Akhmanova, Maria and Linder, M and Roblek, Marko and Sibilia, M and Siekhaus, Daria E}, issn = {1545-7885}, journal = {PLoS Biology}, number = {1}, pages = {e3001494}, publisher = {Public Library of Science}, title = {{Fos regulates macrophage infiltration against surrounding tissue resistance by a cortical actin-based mechanism in Drosophila}}, doi = {10.1371/journal.pbio.3001494}, volume = {20}, year = {2022}, } @unpublished{10080, abstract = {Hippocampal and neocortical neural activity is modulated by the position of the individual in space. While hippocampal neurons provide the basis for a spatial map, prefrontal cortical neurons generalize over environmental features. Whether these generalized representations result from a bidirectional interaction with, or are mainly derived from hippocampal spatial representations is not known. By examining simultaneously recorded hippocampal and medial prefrontal neurons, we observed that prefrontal spatial representations show a delayed coherence with hippocampal ones. We also identified subpopulations of cells in the hippocampus and medial prefrontal cortex that formed functional cross-area couplings; these resembled the optimal connections predicted by a probabilistic model of spatial information transfer and generalization. Moreover, cross-area couplings were strongest and had the shortest delay preceding spatial decision-making. Our results suggest that generalized spatial coding in the medial prefrontal cortex is inherited from spatial representations in the hippocampus, and that the routing of information can change dynamically with behavioral demands.}, author = {Nardin, Michele and Käfer, Karola and Csicsvari, Jozsef L}, booktitle = {bioRxiv}, publisher = {Cold Spring Harbor Laboratory}, title = {{The generalized spatial representation in the prefrontal cortex is inherited from the hippocampus}}, doi = {10.1101/2021.09.30.462269}, year = {2021}, } @article{10635, abstract = {The brain efficiently performs nonlinear computations through its intricate networks of spiking neurons, but how this is done remains elusive. While nonlinear computations can be implemented successfully in spiking neural networks, this requires supervised training and the resulting connectivity can be hard to interpret. In contrast, the required connectivity for any computation in the form of a linear dynamical system can be directly derived and understood with the spike coding network (SCN) framework. These networks also have biologically realistic activity patterns and are highly robust to cell death. Here we extend the SCN framework to directly implement any polynomial dynamical system, without the need for training. This results in networks requiring a mix of synapse types (fast, slow, and multiplicative), which we term multiplicative spike coding networks (mSCNs). Using mSCNs, we demonstrate how to directly derive the required connectivity for several nonlinear dynamical systems. We also show how to carry out higher-order polynomials with coupled networks that use only pair-wise multiplicative synapses, and provide expected numbers of connections for each synapse type. Overall, our work demonstrates a novel method for implementing nonlinear computations in spiking neural networks, while keeping the attractive features of standard SCNs (robustness, realistic activity patterns, and interpretable connectivity). Finally, we discuss the biological plausibility of our approach, and how the high accuracy and robustness of the approach may be of interest for neuromorphic computing.}, author = {Nardin, Michele and Phillips, James W. and Podlaski, William F. and Keemink, Sander W.}, issn = {2804-3871}, journal = {Peer Community Journal}, publisher = {Centre Mersenne ; Peer Community In}, title = {{Nonlinear computations in spiking neural networks through multiplicative synapses}}, doi = {10.24072/pcjournal.69}, volume = {1}, year = {2021}, } @article{8818, abstract = {The hippocampus has a major role in encoding and consolidating long-term memories, and undergoes plastic changes during sleep1. These changes require precise homeostatic control by subcortical neuromodulatory structures2. The underlying mechanisms of this phenomenon, however, remain unknown. Here, using multi-structure recordings in macaque monkeys, we show that the brainstem transiently modulates hippocampal network events through phasic pontine waves known as pontogeniculooccipital waves (PGO waves). Two physiologically distinct types of PGO wave appear to occur sequentially, selectively influencing high-frequency ripples and low-frequency theta events, respectively. The two types of PGO wave are associated with opposite hippocampal spike-field coupling, prompting periods of high neural synchrony of neural populations during periods of ripple and theta instances. The coupling between PGO waves and ripples, classically associated with distinct sleep stages, supports the notion that a global coordination mechanism of hippocampal sleep dynamics by cholinergic pontine transients may promote systems and synaptic memory consolidation as well as synaptic homeostasis.}, author = {Ramirez Villegas, Juan F and Besserve, Michel and Murayama, Yusuke and Evrard, Henry C. and Oeltermann, Axel and Logothetis, Nikos K.}, issn = {14764687}, journal = {Nature}, number = {7840}, pages = {96--102}, publisher = {Springer Nature}, title = {{Coupling of hippocampal theta and ripples with pontogeniculooccipital waves}}, doi = {10.1038/s41586-020-2914-4}, volume = {589}, year = {2021}, } @unpublished{10077, abstract = {Although much is known about how single neurons in the hippocampus represent an animal’s position, how cell-cell interactions contribute to spatial coding remains poorly understood. Using a novel statistical estimator and theoretical modeling, both developed in the framework of maximum entropy models, we reveal highly structured cell-to-cell interactions whose statistics depend on familiar vs. novel environment. In both conditions the circuit interactions optimize the encoding of spatial information, but for regimes that differ in the signal-to-noise ratio of their spatial inputs. Moreover, the topology of the interactions facilitates linear decodability, making the information easy to read out by downstream circuits. These findings suggest that the efficient coding hypothesis is not applicable only to individual neuron properties in the sensory periphery, but also to neural interactions in the central brain.}, author = {Nardin, Michele and Csicsvari, Jozsef L and Tkačik, Gašper and Savin, Cristina}, booktitle = {bioRxiv}, publisher = {Cold Spring Harbor Laboratory}, title = {{The structure of hippocampal CA1 interactions optimizes spatial coding across experience}}, doi = {10.1101/2021.09.28.460602}, year = {2021}, } @article{6796, abstract = {Nearby grid cells have been observed to express a remarkable degree of long-rangeorder, which is often idealized as extending potentially to infinity. Yet their strict peri-odic firing and ensemble coherence are theoretically possible only in flat environments, much unlike the burrows which rodents usually live in. Are the symmetrical, coherent grid maps inferred in the lab relevant to chart their way in their natural habitat? We consider spheres as simple models of curved environments and waiting for the appropriate experiments to be performed, we use our adaptation model to predict what grid maps would emerge in a network with the same type of recurrent connections, which on the plane produce coherence among the units. We find that on the sphere such connections distort the maps that single grid units would express on their own, and aggregate them into clusters. When remapping to a different spherical environment, units in each cluster maintain only partial coherence, similar to what is observed in disordered materials, such as spin glasses.}, author = {Stella, Federico and Urdapilleta, Eugenio and Luo, Yifan and Treves, Alessandro}, issn = {10981063}, journal = {Hippocampus}, number = {4}, pages = {302--313}, publisher = {Wiley}, title = {{Partial coherence and frustration in self-organizing spherical grids}}, doi = {10.1002/hipo.23144}, volume = {30}, year = {2020}, } @article{7472, abstract = {Temporally organized reactivation of experiences during awake immobility periods is thought to underlie cognitive processes like planning and evaluation. While replay of trajectories is well established for the hippocampus, it is unclear whether the medial prefrontal cortex (mPFC) can reactivate sequential behavioral experiences in the awake state to support task execution. We simultaneously recorded from hippocampal and mPFC principal neurons in rats performing a mPFC-dependent rule-switching task on a plus maze. We found that mPFC neuronal activity encoded relative positions between the start and goal. During awake immobility periods, the mPFC replayed temporally organized sequences of these generalized positions, resembling entire spatial trajectories. The occurrence of mPFC trajectory replay positively correlated with rule-switching performance. However, hippocampal and mPFC trajectory replay occurred independently, indicating different functions. These results demonstrate that the mPFC can replay ordered activity patterns representing generalized locations and suggest that mPFC replay might have a role in flexible behavior.}, author = {Käfer, Karola and Nardin, Michele and Blahna, Karel and Csicsvari, Jozsef L}, issn = {0896-6273}, journal = {Neuron}, number = {1}, pages = {P154--165.e6}, publisher = {Elsevier}, title = {{Replay of behavioral sequences in the medial prefrontal cortex during rule switching}}, doi = {10.1016/j.neuron.2020.01.015}, volume = {106}, year = {2020}, } @article{7684, author = {Gridchyn, Igor and Schönenberger, Philipp and O'Neill, Joseph and Csicsvari, Jozsef L}, issn = {10974199}, journal = {Neuron}, number = {2}, pages = {291--300.e6}, publisher = {Elsevier}, title = {{Assembly-specific disruption of hippocampal replay leads to selective memory deficit}}, doi = {10.1016/j.neuron.2020.01.021}, volume = {106}, year = {2020}, } @article{8740, abstract = {In vitro work revealed that excitatory synaptic inputs to hippocampal inhibitory interneurons could undergo Hebbian, associative, or non-associative plasticity. Both behavioral and learning-dependent reorganization of these connections has also been demonstrated by measuring spike transmission probabilities in pyramidal cell-interneuron spike cross-correlations that indicate monosynaptic connections. Here we investigated the activity-dependent modification of these connections during exploratory behavior in rats by optogenetically inhibiting pyramidal cell and interneuron subpopulations. Light application and associated firing alteration of pyramidal and interneuron populations led to lasting changes in pyramidal-interneuron connection weights as indicated by spike transmission changes. Spike transmission alterations were predicted by the light-mediated changes in the number of pre- and postsynaptic spike pairing events and by firing rate changes of interneurons but not pyramidal cells. This work demonstrates the presence of activity-dependent associative and non-associative reorganization of pyramidal-interneuron connections triggered by the optogenetic modification of the firing rate and spike synchrony of cells.}, author = {Gridchyn, Igor and Schönenberger, Philipp and O'Neill, Joseph and Csicsvari, Jozsef L}, issn = {2050084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Optogenetic inhibition-mediated activity-dependent modification of CA1 pyramidal-interneuron connections during behavior}}, doi = {10.7554/eLife.61106}, volume = {9}, year = {2020}, } @misc{8563, abstract = {Supplementary data provided for the provided for the publication: Igor Gridchyn , Philipp Schoenenberger , Joseph O'Neill , Jozsef Csicsvari (2020) Optogenetic inhibition-mediated activity-dependent modification of CA1 pyramidal-interneuron connections during behavior. Elife.}, author = {Csicsvari, Jozsef L and Gridchyn, Igor and Schönenberger, Philipp}, publisher = {Institute of Science and Technology Austria}, title = {{Optogenetic alteration of hippocampal network activity}}, doi = {10.15479/AT:ISTA:8563}, year = {2020}, } @unpublished{8557, abstract = {The infiltration of immune cells into tissues underlies the establishment of tissue resident macrophages, and responses to infections and tumors. Yet the mechanisms immune cells utilize to negotiate tissue barriers in living organisms are not well understood, and a role for cortical actin has not been examined. Here we find that the tissue invasion of Drosophila macrophages, also known as plasmatocytes or hemocytes, utilizes enhanced cortical F-actin levels stimulated by the Drosophila member of the fos proto oncogene transcription factor family (Dfos, Kayak). RNA sequencing analysis and live imaging show that Dfos enhances F-actin levels around the entire macrophage surface by increasing mRNA levels of the membrane spanning molecular scaffold tetraspanin TM4SF, and the actin cross-linking filamin Cheerio which are themselves required for invasion. Cortical F-actin levels are critical as expressing a dominant active form of Diaphanous, a actin polymerizing Formin, can rescue the Dfos Dominant Negative macrophage invasion defect. In vivo imaging shows that Dfos is required to enhance the efficiency of the initial phases of macrophage tissue entry. Genetic evidence argues that this Dfos-induced program in macrophages counteracts the constraint produced by the tension of surrounding tissues and buffers the mechanical properties of the macrophage nucleus from affecting tissue entry. We thus identify tuning the cortical actin cytoskeleton through Dfos as a key process allowing efficient forward movement of an immune cell into surrounding tissues.}, author = {Belyaeva, Vera and Wachner, Stephanie and Gridchyn, Igor and Linder, Markus and Emtenani, Shamsi and György, Attila and Sibilia, Maria and Siekhaus, Daria E}, booktitle = {bioRxiv}, title = {{Cortical actin properties controlled by Drosophila Fos aid macrophage infiltration against surrounding tissue resistance}}, doi = {10.1101/2020.09.18.301481}, year = {2020}, } @article{6338, abstract = {Hippocampal activity patterns representing movement trajectories are reactivated in immobility and sleep periods, a process associated with memory recall, consolidation, and decision making. It is thought that only fixed, behaviorally relevant patterns can be reactivated, which are stored across hippocampal synaptic connections. To test whether some generalized rules govern reactivation, we examined trajectory reactivation following non-stereotypical exploration of familiar open-field environments. We found that random trajectories of varying lengths and timescales were reactivated, resembling that of Brownian motion of particles. The animals’ behavioral trajectory did not follow Brownian diffusion demonstrating that the exact behavioral experience is not reactivated. Therefore, hippocampal circuits are able to generate random trajectories of any recently active map by following diffusion dynamics. This ability of hippocampal circuits to generate representations of all behavioral outcome combinations, experienced or not, may underlie a wide variety of hippocampal-dependent cognitive functions such as learning, generalization, and planning.}, author = {Stella, Federico and Baracskay, Peter and O'Neill, Joseph and Csicsvari, Jozsef L}, journal = {Neuron}, pages = {450--461}, publisher = {Elsevier}, title = {{Hippocampal reactivation of random trajectories resembling Brownian diffusion}}, doi = {10.1016/j.neuron.2019.01.052}, volume = {102}, year = {2019}, } @article{5828, abstract = {Hippocampus is needed for both spatial working and reference memories. Here, using a radial eight-arm maze, we examined how the combined demand on these memories influenced CA1 place cell assemblies while reference memories were partially updated. This was contrasted with control tasks requiring only working memory or the update of reference memory. Reference memory update led to the reward-directed place field shifts at newly rewarded arms and to the gradual strengthening of firing in passes between newly rewarded arms but not between those passes that included a familiar-rewarded arm. At the maze center, transient network synchronization periods preferentially replayed trajectories of the next chosen arm in reference memory tasks but the previously visited arm in the working memory task. Hence, reference memory demand was uniquely associated with a gradual, goal novelty-related reorganization of place cell assemblies and with trajectory replay that reflected the animal's decision of which arm to visit next.}, author = {Xu, Haibing and Baracskay, Peter and O'Neill, Joseph and Csicsvari, Jozsef L}, issn = {10974199}, journal = {Neuron}, number = {1}, pages = {119--132.e4}, publisher = {Elsevier}, title = {{Assembly responses of hippocampal CA1 place cells predict learned behavior in goal-directed spatial tasks on the radial eight-arm maze}}, doi = {10.1016/j.neuron.2018.11.015}, volume = {101}, year = {2019}, } @misc{6062, abstract = {Open the files in Jupyter Notebook (reccomended https://www.anaconda.com/distribution/#download-section with Python 3.7).}, author = {Nardin, Michele}, publisher = {Institute of Science and Technology Austria}, title = {{Supplementary Code and Data for the paper "The Entorhinal Cognitive Map is Attracted to Goals"}}, doi = {10.15479/AT:ISTA:6062}, year = {2019}, } @phdthesis{6849, abstract = {Brain function is mediated by complex dynamical interactions between excitatory and inhibitory cell types. The Cholecystokinin-expressing inhibitory cells (CCK-interneurons) are one of the least studied types, despite being suspected to play important roles in cognitive processes. We studied the network effects of optogenetic silencing of CCK-interneurons in the CA1 hippocampal area during exploration and sleep states. The cell firing pattern in response to light pulses allowed us to classify the recorded neurons in 5 classes, including disinhibited and non-responsive pyramidal cell and interneurons, and the inhibited interneurons corresponding to the CCK group. The light application, which inhibited the activity of CCK interneurons triggered wider changes in the firing dynamics of cells. We observed rate changes (i.e. remapping) of pyramidal cells during the exploration session in which the light was applied relative to the previous control session that was not restricted neither in time nor space to the light delivery. Also, the disinhibited pyramidal cells had higher increase in bursting than in single spike firing rate as a result of CCK silencing. In addition, the firing activity patterns during exploratory periods were more weakly reactivated in sleep for those periods in which CCK-interneuron were silenced than in the unaffected periods. Furthermore, light pulses during sleep disrupted the reactivation of recent waking patterns. Hence, silencing CCK neurons during exploration suppressed the reactivation of waking firing patterns in sleep and CCK interneuron activity was also required during sleep for the normal reactivation of waking patterns. These findings demonstrate the involvement of CCK cells in reactivation-related memory consolidation. An important part of our analysis was to test the relationship of the identified CCKinterneurons to brain oscillations. Our findings showed that these cells exhibited different oscillatory behaviour during anaesthesia and natural waking and sleep conditions. We showed that: 1) Contrary to the past studies performed under anaesthesia, the identified CCKinterneurons fired on the descending portion of the theta phase in waking exploration. 2) CCKinterneuron preferred phases around the trough of gamma oscillations. 3) Contrary to anaesthesia conditions, the average firing rate of the CCK-interneurons increased around the peak activity of the sharp-wave ripple (SWR) events in natural sleep, which is congruent with new reports about their functional connectivity. We also found that light driven CCK-interneuron silencing altered the dynamics on the CA1 network oscillatory activity: 1) Pyramidal cells negatively shifted their preferred theta phases when the light was applied, while interneurons responses were less consistent. 2) As a population, pyramidal cells negatively shifted their preferred activity during gamma oscillations, albeit we did not find gamma modulation differences related to the light application when pyramidal cells were subdivided into the disinhibited and unaffected groups. 3) During the peak of SWR events, all but the CCK-interneurons had a reduction in their relative firing rate change during the light application as compared to the change observed at SWR initiation. Finally, regarding to the place field activity of the recorded pyramidal neurons, we showed that the disinhibited pyramidal cells had reduced place field similarity, coherence and spatial information, but only during the light application. The mechanisms behind such observed behaviours might involve eCB signalling and plastic changes in CCK-interneuron synapses. In conclusion, the observed changes related to the light-mediated silencing of CCKinterneurons have unravelled characteristics of this interneuron subpopulation that might change the understanding not only of their particular network interactions, but also of the current theories about the emergence of certain cognitive processes such as place coding needed for navigation or hippocampus-dependent memory consolidation. }, author = {Rangel Guerrero, Dámaris K}, isbn = {9783990780039}, issn = {2663-337X}, pages = {97}, publisher = {Institute of Science and Technology Austria}, title = {{The role of CCK-interneurons in regulating hippocampal network dynamics}}, doi = {10.15479/AT:ISTA:6849}, year = {2019}, } @article{6194, abstract = {Grid cells with their rigid hexagonal firing fields are thought to provide an invariant metric to the hippocampal cognitive map, yet environmental geometrical features have recently been shown to distort the grid structure. Given that the hippocampal role goes beyond space, we tested the influence of nonspatial information on the grid organization. We trained rats to daily learn three new reward locations on a cheeseboard maze while recording from the medial entorhinal cortex and the hippocampal CA1 region. Many grid fields moved toward goal location, leading to long-lasting deformations of the entorhinal map. Therefore, distortions in the grid structure contribute to goal representation during both learning and recall, which demonstrates that grid cells participate in mnemonic coding and do not merely provide a simple metric of space.}, author = {Boccara, Charlotte N. and Nardin, Michele and Stella, Federico and O'Neill, Joseph and Csicsvari, Jozsef L}, issn = {1095-9203}, journal = {Science}, number = {6434}, pages = {1443--1447}, publisher = {American Association for the Advancement of Science}, title = {{The entorhinal cognitive map is attracted to goals}}, doi = {10.1126/science.aav4837}, volume = {363}, year = {2019}, } @article{5949, abstract = {Aberrant proteostasis of protein aggregation may lead to behavior disorders including chronic mental illnesses (CMI). Furthermore, the neuronal activity alterations that underlie CMI are not well understood. We recorded the local field potential and single-unit activity of the hippocampal CA1 region in vivo in rats transgenically overexpressing the Disrupted-in-Schizophrenia 1 (DISC1) gene (tgDISC1), modeling sporadic CMI. These tgDISC1 rats have previously been shown to exhibit DISC1 protein aggregation, disturbances in the dopaminergic system and attention-related deficits. Recordings were performed during exploration of familiar and novel open field environments and during sleep, allowing investigation of neuronal abnormalities in unconstrained behavior. Compared to controls, tgDISC1 place cells exhibited smaller place fields and decreased speed-modulation of their firing rates, demonstrating altered spatial coding and deficits in encoding location-independent sensory inputs. Oscillation analyses showed that tgDISC1 pyramidal neurons had higher theta phase locking strength during novelty, limiting their phase coding ability. However, their mean theta phases were more variable at the population level, reducing oscillatory network synchronization. Finally, tgDISC1 pyramidal neurons showed a lack of novelty-induced shift in their preferred theta and gamma firing phases, indicating deficits in coding of novel environments with oscillatory firing. By combining single cell and neuronal population analyses, we link DISC1 protein pathology with abnormal hippocampal neural coding and network synchrony, and thereby gain a more comprehensive understanding of CMI mechanisms.}, author = {Käfer, Karola and Malagon-Vina, Hugo and Dickerson, Desiree and O'Neill, Joseph and Trossbach, Svenja V. and Korth, Carsten and Csicsvari, Jozsef L}, journal = {Hippocampus}, number = {9}, pages = {802--816}, publisher = {Wiley}, title = {{Disrupted-in-schizophrenia 1 overexpression disrupts hippocampal coding and oscillatory synchronization}}, doi = {10.1002/hipo.23076}, volume = {29}, year = {2019}, } @phdthesis{6825, abstract = {The solving of complex tasks requires the functions of more than one brain area and their interaction. Whilst spatial navigation and memory is dependent on the hippocampus, flexible behavior relies on the medial prefrontal cortex (mPFC). To further examine the roles of the hippocampus and mPFC, we recorded their neural activity during a task that depends on both of these brain regions. With tetrodes, we recorded the extracellular activity of dorsal hippocampal CA1 (HPC) and mPFC neurons in Long-Evans rats performing a rule-switching task on the plus-maze. The plus-maze task had a spatial component since it required navigation along one of the two start arms and at the maze center a choice between one of the two goal arms. Which goal contained a reward depended on the rule currently in place. After an uncued rule change the animal had to abandon the old strategy and switch to the new rule, testing cognitive flexibility. Investigating the coordination of activity between the HPC and mPFC allows determination during which task stages their interaction is required. Additionally, comparing neural activity patterns in these two brain regions allows delineation of the specialized functions of the HPC and mPFC in this task. We analyzed neural activity in the HPC and mPFC in terms of oscillatory interactions, rule coding and replay. We found that theta coherence between the HPC and mPFC is increased at the center and goals of the maze, both when the rule was stable or has changed. Similar results were found for locking of HPC and mPFC neurons to HPC theta oscillations. However, no differences in HPC-mPFC theta coordination were observed between the spatially- and cue-guided rule. Phase locking of HPC and mPFC neurons to HPC gamma oscillations was not modulated by maze position or rule type. We found that the HPC coded for the two different rules with cofiring relationships between cell pairs. However, we could not find conclusive evidence for rule coding in the mPFC. Spatially-selective firing in the mPFC generalized between the two start and two goal arms. With Bayesian positional decoding, we found that the mPFC reactivated non-local positions during awake immobility periods. Replay of these non-local positions could represent entire behavioral trajectories resembling trajectory replay of the HPC. Furthermore, mPFC trajectory-replay at the goal positively correlated with rule-switching performance. Finally, HPC and mPFC trajectory replay occurred independently of each other. These results show that the mPFC can replay ordered patterns of activity during awake immobility, possibly underlying its role in flexible behavior. }, author = {Käfer, Karola}, issn = {2663-337X}, pages = {89}, publisher = {Institute of Science and Technology Austria}, title = {{The hippocampus and medial prefrontal cortex during flexible behavior}}, doi = {10.15479/AT:ISTA:6825}, year = {2019}, } @article{5914, abstract = {With the advent of optogenetics, it became possible to change the activity of a targeted population of neurons in a temporally controlled manner. To combine the advantages of 60-channel in vivo tetrode recording and laser-based optogenetics, we have developed a closed-loop recording system that allows for the actual electrophysiological signal to be used as a trigger for the laser light mediating the optogenetic intervention. We have optimized the weight, size, and shape of the corresponding implant to make it compatible with the size, force, and movements of a behaving mouse, and we have shown that the system can efficiently block sharp wave ripple (SWR) events using those events themselves as a trigger. To demonstrate the full potential of the optogenetic recording system we present a pilot study addressing the contribution of SWR events to learning in a complex behavioral task.}, author = {Rangel Guerrero, Dámaris K and Donnett, James G. and Csicsvari, Jozsef L and Kovács, Krisztián}, journal = {eNeuro}, number = {4}, publisher = {Society of Neuroscience}, title = {{Tetrode recording from the hippocampus of behaving mice coupled with four-point-irradiation closed-loop optogenetics: A technique to study the contribution of Hippocampal SWR events to learning}}, doi = {10.1523/ENEURO.0087-18.2018}, volume = {5}, year = {2018}, } @phdthesis{48, abstract = {The hippocampus is a key brain region for spatial memory and navigation and is needed at all stages of memory, including encoding, consolidation, and recall. Hippocampal place cells selectively discharge at specific locations of the environment to form a cognitive map of the space. During the rest period and sleep following spatial navigation and/or learning, the waking activity of the place cells is reactivated within high synchrony events. This reactivation is thought to be important for memory consolidation and stabilization of the spatial representations. The aim of my thesis was to directly test whether the reactivation content encoded in firing patterns of place cells is important for consolidation of spatial memories. In particular, I aimed to test whether, in cases when multiple spatial memory traces are acquired during learning, the specific disruption of the reactivation of a subset of these memories leads to the selective disruption of the corresponding memory traces or through memory interference the other learned memories are disrupted as well. In this thesis, using a modified cheeseboard paradigm and a closed-loop recording setup with feedback optogenetic stimulation, I examined how the disruption of the reactivation of specific spiking patterns affects consolidation of the corresponding memory traces. To obtain multiple distinctive memories, animals had to perform a spatial task in two distinct cheeseboard environments and the reactivation of spiking patterns associated with one of the environments (target) was disrupted after learning during four hours rest period using a real-time decoding method. This real-time decoding method was capable of selectively affecting the firing rates and cofiring correlations of the target environment-encoding cells. The selective disruption led to behavioural impairment in the memory tests after the rest periods in the target environment but not in the other undisrupted control environment. In addition, the map of the target environment was less stable in the impaired memory tests compared to the learning session before than the map of the control environment. However, when the animal relearned the task, the same map recurred in the target environment that was present during learning before the disruption. Altogether my work demonstrated that the reactivation content is important: assembly-related disruption of reactivation can lead to a selective memory impairment and deficiency in map stability. These findings indeed suggest that reactivated assembly patterns reflect processes associated with the consolidation of memory traces. }, author = {Gridchyn, Igor}, issn = {2663-337X}, pages = {104}, publisher = {Institute of Science and Technology Austria}, title = {{Reactivation content is important for consolidation of spatial memory}}, doi = {10.15479/AT:ISTA:th_1042}, year = {2018}, } @article{514, abstract = {Orientation in space is represented in specialized brain circuits. Persistent head direction signals are transmitted from anterior thalamus to the presubiculum, but the identity of the presubicular target neurons, their connectivity and function in local microcircuits are unknown. Here, we examine how thalamic afferents recruit presubicular principal neurons and Martinotti interneurons, and the ensuing synaptic interactions between these cells. Pyramidal neuron activation of Martinotti cells in superficial layers is strongly facilitating such that high-frequency head directional stimulation efficiently unmutes synaptic excitation. Martinotti-cell feedback plays a dual role: precisely timed spikes may not inhibit the firing of in-tune head direction cells, while exerting lateral inhibition. Autonomous attractor dynamics emerge from a modelled network implementing wiring motifs and timing sensitive synaptic interactions in the pyramidal - Martinotti-cell feedback loop. This inhibitory microcircuit is therefore tuned to refine and maintain head direction information in the presubiculum.}, author = {Simonnet, Jean and Nassar, Mérie and Stella, Federico and Cohen, Ivan and Mathon, Bertrand and Boccara, Charlotte and Miles, Richard and Fricker, Desdemona}, issn = {20411723}, journal = {Nature Communications}, publisher = {Nature Publishing Group}, title = {{Activity dependent feedback inhibition may maintain head direction signals in mouse presubiculum}}, doi = {10.1038/ncomms16032}, volume = {8}, year = {2017}, } @phdthesis{837, abstract = {The hippocampus is a key brain region for memory and notably for spatial memory, and is needed for both spatial working and reference memories. Hippocampal place cells selectively discharge in specific locations of the environment to form mnemonic represen tations of space. Several behavioral protocols have been designed to test spatial memory which requires the experimental subject to utilize working memory and reference memory. However, less is known about how these memory traces are presented in the hippo campus, especially considering tasks that require both spatial working and long -term reference memory demand. The aim of my thesis was to elucidate how spatial working memory, reference memory, and the combination of both are represented in the hippocampus. In this thesis, using a radial eight -arm maze, I examined how the combined demand on these memories influenced place cell assemblies while reference memories were partially updated by changing some of the reward- arms. This was contrasted with task varian ts requiring working or reference memories only. Reference memory update led to gradual place field shifts towards the rewards on the switched arms. Cells developed enhanced firing in passes between newly -rewarded arms as compared to those containing an unchanged reward. The working memory task did not show such gradual changes. Place assemblies on occasions replayed trajectories of the maze; at decision points the next arm choice was preferentially replayed in tasks needing reference memory while in the pure working memory task the previously visited arm was replayed. Hence trajectory replay only reflected the decision of the animal in tasks needing reference memory update. At the reward locations, in all three tasks outbound trajectories of the current arm were preferentially replayed, showing the animals’ next path to the center. At reward locations trajectories were replayed preferentially in reverse temporal order. Moreover, in the center reverse replay was seen in the working memory task but in the other tasks forward replay was seen. Hence, the direction of reactivation was determined by the goal locations so that part of the trajectory which was closer to the goal was reactivated later in an HSE while places further away from the goal were reactivated earlier. Altogether my work demonstrated that reference memory update triggers several levels of reorganization of the hippocampal cognitive map which are not seen in simpler working memory demand s. Moreover, hippocampus is likely to be involved in spatial decisions through reactivating planned trajectories when reference memory recall is required for such a decision. }, author = {Xu, Haibing}, issn = {2663-337X}, pages = {93}, publisher = {Institute of Science and Technology Austria}, title = {{Reactivation of the hippocampal cognitive map in goal-directed spatial tasks}}, doi = {10.15479/AT:ISTA:th_858}, year = {2017}, } @article{1118, abstract = {Sharp wave-ripple (SWR) oscillations play a key role in memory consolidation during non-rapid eye movement sleep, immobility, and consummatory behavior. However, whether temporally modulated synaptic excitation or inhibition underlies the ripples is controversial. To address this question, we performed simultaneous recordings of excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) and local field potentials (LFPs) in the CA1 region of awake mice in vivo. During SWRs, inhibition dominated over excitation, with a peak conductance ratio of 4.1 ± 0.5. Furthermore, the amplitude of SWR-associated IPSCs was positively correlated with SWR magnitude, whereas that of EPSCs was not. Finally, phase analysis indicated that IPSCs were phase-locked to individual ripple cycles, whereas EPSCs were uniformly distributed in phase space. Optogenetic inhibition indicated that PV+ interneurons provided a major contribution to SWR-associated IPSCs. Thus, phasic inhibition, but not excitation, shapes SWR oscillations in the hippocampal CA1 region in vivo.}, author = {Gan, Jian and Weng, Shih-Ming and Pernia-Andrade, Alejandro and Csicsvari, Jozsef L and Jonas, Peter M}, journal = {Neuron}, number = {2}, pages = {308 -- 314}, publisher = {Elsevier}, title = {{Phase-locked inhibition, but not excitation, underlies hippocampal ripple oscillations in awake mice in vivo}}, doi = {10.1016/j.neuron.2016.12.018}, volume = {93}, year = {2017}, } @article{1132, abstract = {The hippocampus is thought to initiate systems-wide mnemonic processes through the reactivation of previously acquired spatial and episodic memory traces, which can recruit the entorhinal cortex as a first stage of memory redistribution to other brain areas. Hippocampal reactivation occurs during sharp wave-ripples, in which synchronous network firing encodes sequences of places.We investigated the coordination of this replay by recording assembly activity simultaneously in the CA1 region of the hippocampus and superficial layers of the medial entorhinal cortex. We found that entorhinal cell assemblies can replay trajectories independently of the hippocampus and sharp wave-ripples. This suggests that the hippocampus is not the sole initiator of spatial and episodic memory trace reactivation. Memory systems involved in these processes may include nonhierarchical, parallel components.}, author = {O'Neill, Joseph and Boccara, Charlotte and Stella, Federico and Schönenberger, Philipp and Csicsvari, Jozsef L}, issn = {00368075}, journal = {Science}, number = {6321}, pages = {184 -- 188}, publisher = {American Association for the Advancement of Science}, title = {{Superficial layers of the medial entorhinal cortex replay independently of the hippocampus}}, doi = {10.1126/science.aag2787}, volume = {355}, year = {2017}, } @article{993, abstract = {In real-world applications, observations are often constrained to a small fraction of a system. Such spatial subsampling can be caused by the inaccessibility or the sheer size of the system, and cannot be overcome by longer sampling. Spatial subsampling can strongly bias inferences about a system’s aggregated properties. To overcome the bias, we derive analytically a subsampling scaling framework that is applicable to different observables, including distributions of neuronal avalanches, of number of people infected during an epidemic outbreak, and of node degrees. We demonstrate how to infer the correct distributions of the underlying full system, how to apply it to distinguish critical from subcritical systems, and how to disentangle subsampling and finite size effects. Lastly, we apply subsampling scaling to neuronal avalanche models and to recordings from developing neural networks. We show that only mature, but not young networks follow power-law scaling, indicating self-organization to criticality during development.}, author = {Levina (Martius), Anna and Priesemann, Viola}, issn = {20411723}, journal = {Nature Communications}, publisher = {Nature Publishing Group}, title = {{Subsampling scaling}}, doi = {10.1038/ncomms15140}, volume = {8}, year = {2017}, } @article{1279, abstract = {During hippocampal sharp wave/ripple (SWR) events, previously occurring, sensory inputdriven neuronal firing patterns are replayed. Such replay is thought to be important for plasticity- related processes and consolidation of memory traces. It has previously been shown that the electrical stimulation-induced disruption of SWR events interferes with learning in rodents in different experimental paradigms. On the other hand, the cognitive map theory posits that the plastic changes of the firing of hippocampal place cells constitute the electrophysiological counterpart of the spatial learning, observable at the behavioral level. Therefore, we tested whether intact SWR events occurring during the sleep/rest session after the first exploration of a novel environment are needed for the stabilization of the CA1 code, which process requires plasticity. We found that the newly-formed representation in the CA1 has the same level of stability with optogenetic SWR blockade as with a control manipulation that delivered the same amount of light into the brain. Therefore our results suggest that at least in the case of passive exploratory behavior, SWR-related plasticity is dispensable for the stability of CA1 ensembles.}, author = {Kovács, Krisztián and O'Neill, Joseph and Schönenberger, Philipp and Penttonen, Markku and Rangel Guerrero, Dámaris K and Csicsvari, Jozsef L}, journal = {PLoS One}, number = {10}, publisher = {Public Library of Science}, title = {{Optogenetically blocking sharp wave ripple events in sleep does not interfere with the formation of stable spatial representation in the CA1 area of the hippocampus}}, doi = {10.1371/journal.pone.0164675}, volume = {11}, year = {2016}, } @article{1334, abstract = {Hippocampal neurons encode a cognitive map of space. These maps are thought to be updated during learning and in response to changes in the environment through activity-dependent synaptic plasticity. Here we examine how changes in activity influence spatial coding in rats using halorhodopsin-mediated, spatially selective optogenetic silencing. Halorhoposin stimulation leads to light-induced suppression in many place cells and interneurons; some place cells increase their firing through disinhibition, whereas some show no effect. We find that place fields of the unaffected subpopulation remain stable. On the other hand, place fields of suppressed place cells were unstable, showing remapping across sessions before and after optogenetic inhibition. Disinhibited place cells had stable maps but sustained an elevated firing rate. These findings suggest that place representation in the hippocampus is constantly governed by activity-dependent processes, and that disinhibition may provide a mechanism for rate remapping.}, author = {Schönenberger, Philipp and O'Neill, Joseph and Csicsvari, Jozsef L}, journal = {Nature Communications}, publisher = {Nature Publishing Group}, title = {{Activity dependent plasticity of hippocampal place maps}}, doi = {10.1038/ncomms11824}, volume = {7}, year = {2016}, } @article{1487, abstract = {Rhythms with time scales of multiple cycles per second permeate the mammalian brain, yet neuroscientists are not certain of their functional roles. One leading idea is that coherent oscillation between two brain regions facilitates the exchange of information between them. In rats, the hippocampus and the vibrissal sensorimotor system both are characterized by rhythmic oscillation in the theta range, 5–12 Hz. Previous work has been divided as to whether the two rhythms are independent or coherent. To resolve this question, we acquired three measures from rats—whisker motion, hippocampal local field potential (LFP), and barrel cortex unit firing—during a whisker-mediated texture discrimination task and during control conditions (not engaged in a whisker-mediated memory task). Compared to control conditions, the theta band of hippocampal LFP showed a marked increase in power as the rats approached and then palpated the texture. Phase synchronization between whisking and hippocampal LFP increased by almost 50% during approach and texture palpation. In addition, a greater proportion of barrel cortex neurons showed firing that was phase-locked to hippocampal theta while rats were engaged in the discrimination task. Consistent with a behavioral consequence of phase synchronization, the rats identified the texture more rapidly and with lower error likelihood on trials in which there was an increase in theta-whisking coherence at the moment of texture palpation. These results suggest that coherence between the whisking rhythm, barrel cortex firing, and hippocampal LFP is augmented selectively during epochs in which the rat collects sensory information and that such coherence enhances the efficiency of integration of stimulus information into memory and decision-making centers.}, author = {Grion, Natalia and Akrami, Athena and Zuo, Yangfang and Stella, Federico and Diamond, Mathew}, journal = {PLoS Biology}, number = {2}, publisher = {Public Library of Science}, title = {{Coherence between rat sensorimotor system and hippocampus is enhanced during tactile discrimination}}, doi = {10.1371/journal.pbio.1002384}, volume = {14}, year = {2016}, } @article{1663, abstract = {CREB-binding protein (CBP) and p300 are transcriptional coactivators involved in numerous biological processes that affect cell growth, transformation, differentiation, and development. In this study, we provide evidence of the involvement of homeodomain-interacting protein kinase 2 (HIPK2) in the regulation of CBP activity. We show that HIPK2 interacts with and phosphorylates several regions of CBP. We demonstrate that serines 2361, 2363, 2371, 2376, and 2381 are responsible for the HIPK2-induced mobility shift of CBP C-terminal activation domain. Moreover, we show that HIPK2 strongly potentiates the transcriptional activity of CBP. However, our data suggest that HIPK2 activates CBP mainly by counteracting the repressive action of cell cycle regulatory domain 1 (CRD1), located between amino acids 977 and 1076, independently of CBP phosphorylation. Our findings thus highlight a complex regulation of CBP activity by HIPK2, which might be relevant for the control of specific sets of target genes involved in cellular proliferation, differentiation and apoptosis.}, author = {Kovács, Krisztián and Steinmann, Myriam and Halfon, Olivier and Magistretti, Pierre and Cardinaux, Jean}, journal = {Cellular Signalling}, number = {11}, pages = {2252 -- 2260}, publisher = {Elsevier}, title = {{Complex regulation of CREB-binding protein by homeodomain-interacting protein kinase 2}}, doi = {10.1016/j.cellsig.2015.08.001}, volume = {27}, year = {2015}, } @article{1874, abstract = {The hippocampal region, comprising the hippocampal formation and the parahippocampal region, has been one of the most intensively studied parts of the brain for decades. Better understanding of its functional diversity and complexity has led to an increased demand for specificity in experimental procedures and manipulations. In view of the complex 3D structure of the hippocampal region, precisely positioned experimental approaches require a fine-grained architectural description that is available and readable to experimentalists lacking detailed anatomical experience. In this paper, we provide the first cyto- and chemoarchitectural description of the hippocampal formation and parahippocampal region in the rat at high resolution and in the three standard sectional planes: coronal, horizontal and sagittal. The atlas uses a series of adjacent sections stained for neurons and for a number of chemical marker substances, particularly parvalbumin and calbindin. All the borders defined in one plane have been cross-checked against their counterparts in the other two planes. The entire dataset will be made available as a web-based interactive application through the Rodent Brain WorkBench (http://www.rbwb.org) which, together with this paper, provides a unique atlas resource.}, author = {Boccara, Charlotte and Kjønigsen, Lisa and Hammer, Ingvild and Bjaalie, Jan and Leergaard, Trygve and Witter, Menno}, journal = {Hippocampus}, number = {7}, pages = {838 -- 857}, publisher = {Wiley}, title = {{A three-plane architectonic atlas of the rat hippocampal region}}, doi = {10.1002/hipo.22407}, volume = {25}, year = {2015}, } @article{2003, abstract = {Learning can be facilitated by previous knowledge when it is organized into relational representations forming schemas. In this issue of Neuron, McKenzie et al. (2014) demonstrate that the hippocampus rapidly forms interrelated, hierarchical memory representations to support schema-based learning.}, author = {O'Neill, Joseph and Csicsvari, Jozsef L}, journal = {Neuron}, number = {1}, pages = {8 -- 10}, publisher = {Elsevier}, title = {{Learning by example in the hippocampus}}, doi = {10.1016/j.neuron.2014.06.013}, volume = {83}, year = {2014}, } @article{2005, abstract = {By eliciting a natural exploratory behavior in rats, head scanning, a study reveals that hippocampal place cells form new, stable firing fields in those locations where the behavior has just occurred.}, author = {Dupret, David and Csicsvari, Jozsef L}, journal = {Nature Neuroscience}, number = {5}, pages = {643 -- 644}, publisher = {Nature Publishing Group}, title = {{Turning heads to remember places}}, doi = {10.1038/nn.3700}, volume = {17}, year = {2014}, } @article{2251, abstract = {Sharp wave/ripple (SWR, 150–250 Hz) hippocampal events have long been postulated to be involved in memory consolidation. However, more recent work has investigated SWRs that occur during active waking behaviour: findings that suggest that SWRs may also play a role in cell assembly strengthening or spatial working memory. Do such theories of SWR function apply to animal learning? This review discusses how general theories linking SWRs to memory-related function may explain circuit mechanisms related to rodent spatial learning and to the associated stabilization of new cognitive maps.}, author = {Csicsvari, Jozsef L and Dupret, David}, issn = {09628436}, journal = {Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences}, number = {1635}, publisher = {Royal Society, The}, title = {{Sharp wave/ripple network oscillations and learning-associated hippocampal maps}}, doi = {10.1098/rstb.2012.0528}, volume = {369}, year = {2014}, } @article{2004, abstract = {We have assembled a network of cell-fate determining transcription factors that play a key role in the specification of the ventral neuronal subtypes of the spinal cord on the basis of published transcriptional interactions. Asynchronous Boolean modelling of the network was used to compare simulation results with reported experimental observations. Such comparison highlighted the need to include additional regulatory connections in order to obtain the fixed point attractors of the model associated with the five known progenitor cell types located in the ventral spinal cord. The revised gene regulatory network reproduced previously observed cell state switches between progenitor cells observed in knock-out animal models or in experiments where the transcription factors were overexpressed. Furthermore the network predicted the inhibition of Irx3 by Nkx2.2 and this prediction was tested experimentally. Our results provide evidence for the existence of an as yet undescribed inhibitory connection which could potentially have significance beyond the ventral spinal cord. The work presented in this paper demonstrates the strength of Boolean modelling for identifying gene regulatory networks.}, author = {Lovrics, Anna and Gao, Yu and Juhász, Bianka and Bock, István and Byrne, Helen and Dinnyés, András and Kovács, Krisztián}, journal = {PLoS One}, number = {11}, publisher = {Public Library of Science}, title = {{Boolean modelling reveals new regulatory connections between transcription factors orchestrating the development of the ventral spinal cord}}, doi = {10.1371/journal.pone.0111430}, volume = {9}, year = {2014}, } @misc{9722, author = {Lovrics, Anna and Gao, Yu and Juhász, Bianka and Bock, István and Byrne, Helen M. and Dinnyés, András and Kovács, Krisztián}, publisher = {Public Library of Science}, title = {{Transition probability between TF expression states when Dbx2 inhibits Nkx2.2}}, doi = {10.1371/journal.pone.0111430.s006}, year = {2014}, } @inproceedings{2276, abstract = {The problem of minimizing the Potts energy function frequently occurs in computer vision applications. One way to tackle this NP-hard problem was proposed by Kovtun [19, 20]. It identifies a part of an optimal solution by running k maxflow computations, where k is the number of labels. The number of “labeled” pixels can be significant in some applications, e.g. 50-93% in our tests for stereo. We show how to reduce the runtime to O (log k) maxflow computations (or one parametric maxflow computation). Furthermore, the output of our algorithm allows to speed-up the subsequent alpha expansion for the unlabeled part, or can be used as it is for time-critical applications. To derive our technique, we generalize the algorithm of Felzenszwalb et al. [7] for Tree Metrics . We also show a connection to k-submodular functions from combinatorial optimization, and discuss k-submodular relaxations for general energy functions.}, author = {Gridchyn, Igor and Kolmogorov, Vladimir}, location = {Sydney, Australia}, pages = {2320 -- 2327}, publisher = {IEEE}, title = {{Potts model, parametric maxflow and k-submodular functions}}, doi = {10.1109/ICCV.2013.288}, year = {2013}, } @article{2840, abstract = {It is known that the entorhinal cortex plays a crucial role in spatial cognition in rodents. Neuroanatomical and electrophysiological data suggest that there is a functional distinction between 2 subregions within the entorhinal cortex, the medial entorhinal cortex (MEC), and the lateral entorhinal cortex (LEC). Rats with MEC or LEC lesions were trained in 2 navigation tasks requiring allothetic (water maze task) or idiothetic (path integration) information processing and 2-object exploration tasks allowing testing of spatial and nonspatial processing of intramaze objects. MEC lesions mildly affected place navigation in the water maze and produced a path integration deficit. They also altered the processing of spatial information in both exploration tasks while sparing the processing of nonspatial information. LEC lesions did not affect navigation abilities in both the water maze and the path integration tasks. They altered spatial and nonspatial processing in the object exploration task but not in the one-trial recognition task. Overall, these results indicate that the MEC is important for spatial processing and path integration. The LEC has some influence on both spatial and nonspatial processes, suggesting that the 2 kinds of information interact at the level of the EC.}, author = {Van Cauter, Tiffany and Camon, Jeremy and Alvernhe, Alice and Elduayen, Coralie and Sargolini, Francesca and Save, Étienne}, journal = {Cerebral Cortex}, number = {2}, pages = {451 -- 459}, publisher = {Oxford University Press}, title = {{Distinct roles of medial and lateral entorhinal cortex in spatial cognition}}, doi = {10.1093/cercor/bhs033}, volume = {23}, year = {2013}, } @article{2845, abstract = {At synapses formed between dissociated neurons, about half of all synaptic vesicles are refractory to evoked release, forming the so-called "resting pool." Here, we use optical measurements of vesicular pH to study developmental changes in pool partitioning and vesicle cycling in cultured hippocampal slices. Two-photon imaging of a genetically encoded two-color release sensor (ratio-sypHy) allowed us to perform calibrated measurements at individual Schaffer collateral boutons. Mature boutons released a large fraction of their vesicles during simulated place field activity, and vesicle retrieval rates were 7-fold higher compared to immature boutons. Saturating stimulation mobilized essentially all vesicles at mature synapses. Resting pool formation and a concomitant reduction in evoked release was induced by chronic depolarization but not by acute inhibition of the protein phosphatase calcineurin. We conclude that synapses in CA1 undergo a prominent refinement of vesicle use during early postnatal development that is not recapitulated in dissociated neuronal culture.}, author = {Rose, Tobias and Schönenberger, Philipp and Jezek, Karel and Oertner, Thomas}, journal = {Neuron}, number = {6}, pages = {1109 -- 1121}, publisher = {Elsevier}, title = {{Developmental refinement of vesicle cycling at Schaffer collateral synapses}}, doi = {10.1016/j.neuron.2013.01.021}, volume = {77}, year = {2013}, } @article{2860, abstract = {In the hippocampus, cell assemblies forming mnemonic representations of space are thought to arise as a result of changes in functional connections of pyramidal cells. We have found that CA1 interneuron circuits are also reconfigured during goal-oriented spatial learning through modification of inputs from pyramidal cells. As learning progressed, new pyramidal assemblies expressed in theta cycles alternated with previously established ones, and eventually overtook them. The firing patterns of interneurons developed a relationship to new, learning-related assemblies: some interneurons associated their activity with new pyramidal assemblies while some others dissociated from them. These firing associations were explained by changes in the weight of monosynaptic inputs received by interneurons from new pyramidal assemblies, as these predicted the associational changes. Spatial learning thus engages circuit modifications in the hippocampus that incorporate a redistribution of inhibitory activity that might assist in the segregation of competing pyramidal cell assembly patterns in space and time.}, author = {Dupret, David and O'Neill, Joseph and Csicsvari, Jozsef L}, journal = {Neuron}, number = {1}, pages = {166 -- 180}, publisher = {Elsevier}, title = {{Dynamic reconfiguration of hippocampal interneuron circuits during spatial learning}}, doi = {10.1016/j.neuron.2013.01.033}, volume = {78}, year = {2013}, } @article{476, abstract = {Maternal exposure to infection occurring mid-gestation produces a three-fold increase in the risk of schizophrenia in the offspring. The critical initiating factor appears to be the maternal immune activation (MIA) that follows infection. This process can be induced in rodents by exposure of pregnant dams to the viral mimic Poly I:C, which triggers an immune response that results in structural, functional, behavioral, and electrophysiological phenotypes in the adult offspring that model those seen in schizophrenia. We used this model to explore the role of synchronization in brain neural networks, a process thought to be dysfunctional in schizophrenia and previously associated with positive, negative, and cognitive symptoms of schizophrenia. Exposure of pregnant dams to Poly I:C on GD15 produced an impairment in long-range neural synchrony in adult offspring between two regions implicated in schizophrenia pathology; the hippocampus and the medial prefrontal cortex (mPFC). This reduction in synchrony was ameliorated by acute doses of the antipsychotic clozapine. MIA animals have previously been shown to have impaired pre-pulse inhibition (PPI), a gold-standard measure of schizophrenia-like deficits in animal models. Our data showed that deficits in synchrony were positively correlated with the impairments in PPI. Subsequent analysis of LFP activity during the PPI response also showed that reduced coupling between the mPFC and the hippocampus following processing of the pre-pulse was associated with reduced PPI. The ability of the MIA intervention to model neurodevelopmental aspects of schizophrenia pathology provides a useful platform from which to investigate the ontogeny of aberrant synchronous processes. Further, the way in which the model expresses translatable deficits such as aberrant synchrony and reduced PPI will allow researchers to explore novel intervention strategies targeted to these changes. }, author = {Dickerson, Desiree and Bilkey, David}, journal = {Frontiers in Behavioral Neuroscience}, number = {DEC}, publisher = {Frontiers Research Foundation}, title = {{Aberrant neural synchrony in the maternal immune activation model: Using translatable measures to explore targeted interventions}}, doi = {10.3389/fnbeh.2013.00217}, volume = {7}, year = {2013}, } @article{2949, author = {Dupret, David and Csicsvari, Jozsef L}, journal = {Nature Neuroscience}, number = {11}, pages = {1471 -- 1472}, publisher = {Nature Publishing Group}, title = {{The medial entorhinal cortex keeps Up}}, doi = {10.1038/nn.3245}, volume = {15}, year = {2012}, } @article{2958, abstract = {The activity of hippocampal pyramidal cells reflects both the current position of the animal and information related to its current behavior. Here we investigated whether single hippocampal neurons can encode several independent features defining trials during a memory task. We also tested whether task-related information is represented by partial remapping of the place cell population or, instead, via firing rate modulation of spatially stable place cells. To address these two questions, the activity of hippocampal neurons was recorded in rats performing a conditional discrimination task on a modified T-maze in which the identity of a food reward guided behavior. When the rat was on the central arm of the maze, the firing rate of pyramidal cells changed depending on two independent factors: (1) the identity of the food reward given to the animal and (2) the previous location of the animal on the maze. Importantly, some pyramidal cells encoded information relative to both factors. This trial-type specific and retrospective coding did not interfere with the spatial representation of the maze: hippocampal cells had stable place fields and their theta-phase precession profiles were unaltered during the task, indicating that trial-related information was encoded via rate remapping. During error trials, encoding of both trial-related information and spatial location was impaired. Finally, we found that pyramidal cells also encode trial-related information via rate remapping during the continuous version of the rewarded alternation task without delays. These results suggest that hippocampal neurons can encode several task-related cognitive aspects via rate remapping.}, author = {Allen, Kevin and Rawlins, J Nick and Bannerman, David and Csicsvari, Jozsef L}, journal = {Journal of Neuroscience}, number = {42}, pages = {14752 -- 14766}, publisher = {Society for Neuroscience}, title = {{Hippocampal place cells can encode multiple trial-dependent features through rate remapping}}, doi = {10.1523/JNEUROSCI.6175-11.2012}, volume = {32}, year = {2012}, }