5 Publications

Mark all

[5]
2025 | Published | Conference Paper | IST-REx-ID: 20008 | OA
Avvakumov, S., Filakovský, M., Opršal, J., Tasinato, G., & Wagner, U. (2025). Hardness of 4-colouring G-colourable graphs. In Proceedings of the 57th Annual ACM Symposium on Theory of Computing (pp. 72–83). Prague, Czechia: Association for Computing Machinery. https://doi.org/10.1145/3717823.3718154
[Published Version] View | Files available | DOI
 
[4]
2025 | Published | Thesis | IST-REx-ID: 20339 | OA
Tasinato, G. (2025). Topological methods in discrete geometry and theoretical computer science : Measure partitioning and constraint satisfaction problems. Institute of Science and Technology Austria. https://doi.org/10.15479/AT-ISTA-20339
[Published Version] View | Files available | DOI
 
[3]
2025 | Epub ahead of print | Journal Article | IST-REx-ID: 19860 | OA
Aronov, B., Basit, A., Ramesh, I., Tasinato, G., & Wagner, U. (2025). Eight-partitioning points in 3D, and efficiently too. Discrete and Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-025-00739-0
[Published Version] View | Files available | DOI | Download Published Version (ext.) | WoS | arXiv
 
[2]
2024 | Published | Conference Paper | IST-REx-ID: 15168 | OA
Filakovský, M., Nakajima, T. V., Opršal, J., Tasinato, G., & Wagner, U. (2024). Hardness of linearly ordered 4-colouring of 3-colourable 3-uniform hypergraphs. In 41st International Symposium on Theoretical Aspects of Computer Science (Vol. 289). Clermont-Ferrand, France: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.STACS.2024.34
[Published Version] View | Files available | DOI | WoS | arXiv
 
[1]
2024 | Published | Conference Paper | IST-REx-ID: 18917 | OA
Aronov, B., Basit, A., Ramesh, I., Tasinato, G., & Wagner, U. (2024). Eight-partitioning points in 3D, and efficiently too. In 40th International Symposium on Computational Geometry (Vol. 293, p. 8:1-8:15). Athens, Greece: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2024.8
[Published Version] View | Files available | DOI | arXiv
 

Search

Filter Publications

Display / Sort

Citation Style: APA

Export / Embed

Grants


5 Publications

Mark all

[5]
2025 | Published | Conference Paper | IST-REx-ID: 20008 | OA
Avvakumov, S., Filakovský, M., Opršal, J., Tasinato, G., & Wagner, U. (2025). Hardness of 4-colouring G-colourable graphs. In Proceedings of the 57th Annual ACM Symposium on Theory of Computing (pp. 72–83). Prague, Czechia: Association for Computing Machinery. https://doi.org/10.1145/3717823.3718154
[Published Version] View | Files available | DOI
 
[4]
2025 | Published | Thesis | IST-REx-ID: 20339 | OA
Tasinato, G. (2025). Topological methods in discrete geometry and theoretical computer science : Measure partitioning and constraint satisfaction problems. Institute of Science and Technology Austria. https://doi.org/10.15479/AT-ISTA-20339
[Published Version] View | Files available | DOI
 
[3]
2025 | Epub ahead of print | Journal Article | IST-REx-ID: 19860 | OA
Aronov, B., Basit, A., Ramesh, I., Tasinato, G., & Wagner, U. (2025). Eight-partitioning points in 3D, and efficiently too. Discrete and Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-025-00739-0
[Published Version] View | Files available | DOI | Download Published Version (ext.) | WoS | arXiv
 
[2]
2024 | Published | Conference Paper | IST-REx-ID: 15168 | OA
Filakovský, M., Nakajima, T. V., Opršal, J., Tasinato, G., & Wagner, U. (2024). Hardness of linearly ordered 4-colouring of 3-colourable 3-uniform hypergraphs. In 41st International Symposium on Theoretical Aspects of Computer Science (Vol. 289). Clermont-Ferrand, France: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.STACS.2024.34
[Published Version] View | Files available | DOI | WoS | arXiv
 
[1]
2024 | Published | Conference Paper | IST-REx-ID: 18917 | OA
Aronov, B., Basit, A., Ramesh, I., Tasinato, G., & Wagner, U. (2024). Eight-partitioning points in 3D, and efficiently too. In 40th International Symposium on Computational Geometry (Vol. 293, p. 8:1-8:15). Athens, Greece: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2024.8
[Published Version] View | Files available | DOI | arXiv
 

Search

Filter Publications

Display / Sort

Citation Style: APA

Export / Embed