Eldar Kurtic
7 Publications
2024 | Published | Conference Paper | IST-REx-ID: 15011 |

Kurtic, Eldar, Torsten Hoefler, and Dan-Adrian Alistarh. “How to Prune Your Language Model: Recovering Accuracy on the ‘Sparsity May Cry’ Benchmark.” In Proceedings of Machine Learning Research, 234:542–53. ML Research Press, 2024.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2024 | Published | Conference Paper | IST-REx-ID: 18975 |

Modoranu, Ionut-Vlad, Aleksei Kalinov, Eldar Kurtic, Elias Frantar, and Dan-Adrian Alistarh. “Error Feedback Can Accurately Compress Preconditioners.” In 41st International Conference on Machine Learning, 235:35910–33. ML Research Press, 2024.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2024 | Published | Conference Paper | IST-REx-ID: 19510 |

Modoranu, Ionut-Vlad, Mher Safaryan, Grigory Malinovsky, Eldar Kurtic, Thomas Robert, Peter Richtárik, and Dan-Adrian Alistarh. “MICROADAM: Accurate Adaptive Optimization with Low Space Overhead and Provable Convergence.” In 38th Conference on Neural Information Processing Systems, Vol. 37. Neural Information Processing Systems Foundation, 2024.
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv
2023 | Published | Conference Paper | IST-REx-ID: 14460 |

Nikdan, Mahdi, Tommaso Pegolotti, Eugenia B Iofinova, Eldar Kurtic, and Dan-Adrian Alistarh. “SparseProp: Efficient Sparse Backpropagation for Faster Training of Neural Networks at the Edge.” In Proceedings of the 40th International Conference on Machine Learning, 202:26215–27. ML Research Press, 2023.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2023 | Published | Conference Paper | IST-REx-ID: 13053 |

Krumes, Alexandra, Adrian Vladu, Eldar Kurtic, Christoph Lampert, and Dan-Adrian Alistarh. “CrAM: A Compression-Aware Minimizer.” In 11th International Conference on Learning Representations . OpenReview, 2023.
[Published Version]
View
| Files available
| Download Published Version (ext.)
| arXiv
2022 | Published | Conference Paper | IST-REx-ID: 17088 |

Kurtic, Eldar, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran, Michael Goin, and Dan-Adrian Alistarh. “The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models.” In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, 4163–81. Association for Computational Linguistics, 2022. https://doi.org/10.18653/v1/2022.emnlp-main.279.
[Published Version]
View
| Files available
| DOI
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 11463 |

Frantar, Elias, Eldar Kurtic, and Dan-Adrian Alistarh. “M-FAC: Efficient Matrix-Free Approximations of Second-Order Information.” In 35th Conference on Neural Information Processing Systems, 34:14873–86. Neural Information Processing Systems Foundation, 2021.
[Published Version]
View
| Download Published Version (ext.)
| arXiv
Search
Filter Publications
Display / Sort
Export / Embed
Grants
7 Publications
2024 | Published | Conference Paper | IST-REx-ID: 15011 |

Kurtic, Eldar, Torsten Hoefler, and Dan-Adrian Alistarh. “How to Prune Your Language Model: Recovering Accuracy on the ‘Sparsity May Cry’ Benchmark.” In Proceedings of Machine Learning Research, 234:542–53. ML Research Press, 2024.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2024 | Published | Conference Paper | IST-REx-ID: 18975 |

Modoranu, Ionut-Vlad, Aleksei Kalinov, Eldar Kurtic, Elias Frantar, and Dan-Adrian Alistarh. “Error Feedback Can Accurately Compress Preconditioners.” In 41st International Conference on Machine Learning, 235:35910–33. ML Research Press, 2024.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2024 | Published | Conference Paper | IST-REx-ID: 19510 |

Modoranu, Ionut-Vlad, Mher Safaryan, Grigory Malinovsky, Eldar Kurtic, Thomas Robert, Peter Richtárik, and Dan-Adrian Alistarh. “MICROADAM: Accurate Adaptive Optimization with Low Space Overhead and Provable Convergence.” In 38th Conference on Neural Information Processing Systems, Vol. 37. Neural Information Processing Systems Foundation, 2024.
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv
2023 | Published | Conference Paper | IST-REx-ID: 14460 |

Nikdan, Mahdi, Tommaso Pegolotti, Eugenia B Iofinova, Eldar Kurtic, and Dan-Adrian Alistarh. “SparseProp: Efficient Sparse Backpropagation for Faster Training of Neural Networks at the Edge.” In Proceedings of the 40th International Conference on Machine Learning, 202:26215–27. ML Research Press, 2023.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2023 | Published | Conference Paper | IST-REx-ID: 13053 |

Krumes, Alexandra, Adrian Vladu, Eldar Kurtic, Christoph Lampert, and Dan-Adrian Alistarh. “CrAM: A Compression-Aware Minimizer.” In 11th International Conference on Learning Representations . OpenReview, 2023.
[Published Version]
View
| Files available
| Download Published Version (ext.)
| arXiv
2022 | Published | Conference Paper | IST-REx-ID: 17088 |

Kurtic, Eldar, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran, Michael Goin, and Dan-Adrian Alistarh. “The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models.” In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, 4163–81. Association for Computational Linguistics, 2022. https://doi.org/10.18653/v1/2022.emnlp-main.279.
[Published Version]
View
| Files available
| DOI
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 11463 |

Frantar, Elias, Eldar Kurtic, and Dan-Adrian Alistarh. “M-FAC: Efficient Matrix-Free Approximations of Second-Order Information.” In 35th Conference on Neural Information Processing Systems, 34:14873–86. Neural Information Processing Systems Foundation, 2021.
[Published Version]
View
| Download Published Version (ext.)
| arXiv