Kevin Kögler
3 Publications
2024 | Published | Conference Paper | IST-REx-ID: 17469 |

Kögler, Kevin, et al. “Compression of Structured Data with Autoencoders: Provable Benefit of Nonlinearities and Depth.” Proceedings of the 41st International Conference on Machine Learning, vol. 235, ML Research Press, 2024, pp. 24964–5015.
[Published Version]
View
| Files available
| Download Published Version (ext.)
| arXiv
2023 | Published | Conference Paper | IST-REx-ID: 14459 |

Shevchenko, Alexander, et al. “Fundamental Limits of Two-Layer Autoencoders, and Achieving Them with Gradient Methods.” Proceedings of the 40th International Conference on Machine Learning, vol. 202, ML Research Press, 2023, pp. 31151–209.
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv
2022 | Published | Conference Paper | IST-REx-ID: 12540 |

Venkataramanan, Ramji, et al. “Estimation in Rotationally Invariant Generalized Linear Models via Approximate Message Passing.” Proceedings of the 39th International Conference on Machine Learning, vol. 162, 22, ML Research Press, 2022.
[Published Version]
View
| Files available
Grants
3 Publications
2024 | Published | Conference Paper | IST-REx-ID: 17469 |

Kögler, Kevin, et al. “Compression of Structured Data with Autoencoders: Provable Benefit of Nonlinearities and Depth.” Proceedings of the 41st International Conference on Machine Learning, vol. 235, ML Research Press, 2024, pp. 24964–5015.
[Published Version]
View
| Files available
| Download Published Version (ext.)
| arXiv
2023 | Published | Conference Paper | IST-REx-ID: 14459 |

Shevchenko, Alexander, et al. “Fundamental Limits of Two-Layer Autoencoders, and Achieving Them with Gradient Methods.” Proceedings of the 40th International Conference on Machine Learning, vol. 202, ML Research Press, 2023, pp. 31151–209.
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv
2022 | Published | Conference Paper | IST-REx-ID: 12540 |

Venkataramanan, Ramji, et al. “Estimation in Rotationally Invariant Generalized Linear Models via Approximate Message Passing.” Proceedings of the 39th International Conference on Machine Learning, vol. 162, 22, ML Research Press, 2022.
[Published Version]
View
| Files available