Ilia Markov
Graduate School
Alistarh Group
7 Publications
2024 | Published | Thesis | IST-REx-ID: 17490 |

Markov, I. (2024). Communication-efficient distributed training of deep neural networks : An algorithms and systems perspective. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:17490
[Published Version]
View
| Files available
| DOI
2024 | Published | Conference Paper | IST-REx-ID: 17456 |

Markov, I., Alimohammadi, K., Frantar, E., & Alistarh, D.-A. (2024). L-GreCo: Layerwise-adaptive gradient compression for efficient data-parallel deep learning. In P. Gibbons, G. Pekhimenko, & C. De Sa (Eds.), Proceedings of Machine Learning and Systems (Vol. 6). Athens, Greece: Association for Computing Machinery.
[Published Version]
View
| Files available
| Download Published Version (ext.)
| arXiv
2023 | Published | Conference Paper | IST-REx-ID: 14461 |

Markov, I., Vladu, A., Guo, Q., & Alistarh, D.-A. (2023). Quantized distributed training of large models with convergence guarantees. In Proceedings of the 40th International Conference on Machine Learning (Vol. 202, pp. 24020–24044). Honolulu, Hawaii, HI, United States: ML Research Press.
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv
2022 | Published | Conference Paper | IST-REx-ID: 12780 |

Markov, I., Ramezanikebrya, H., & Alistarh, D.-A. (2022). CGX: Adaptive system support for communication-efficient deep learning. In Proceedings of the 23rd ACM/IFIP International Middleware Conference (pp. 241–254). Quebec, QC, Canada: Association for Computing Machinery. https://doi.org/10.1145/3528535.3565248
[Published Version]
View
| Files available
| DOI
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 10432 |

Nadiradze, G., Markov, I., Chatterjee, B., Kungurtsev, V., & Alistarh, D.-A. (2021). Elastic consistency: A practical consistency model for distributed stochastic gradient descent. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, pp. 9037–9045). Virtual.
[Published Version]
View
| Files available
| Download Published Version (ext.)
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 10049 |

Klein, K., Pascual Perez, G., Walter, M., Kamath Hosdurg, C., Capretto, M., Cueto Noval, M., … Pietrzak, K. Z. (2021). Keep the dirt: tainted TreeKEM, adaptively and actively secure continuous group key agreement. In 2021 IEEE Symposium on Security and Privacy (pp. 268–284). San Francisco, CA, United States: IEEE. https://doi.org/10.1109/sp40001.2021.00035
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
2020 | Published | Conference Paper | IST-REx-ID: 15086 |

Faghri, F., Tabrizian, I., Markov, I., Alistarh, D.-A., Roy, D., & Ramezani-Kebrya, A. (2020). Adaptive gradient quantization for data-parallel SGD. In Advances in Neural Information Processing Systems (Vol. 33). Vancouver, Canada: Neural Information Processing Systems Foundation.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
Grants
7 Publications
2024 | Published | Thesis | IST-REx-ID: 17490 |

Markov, I. (2024). Communication-efficient distributed training of deep neural networks : An algorithms and systems perspective. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:17490
[Published Version]
View
| Files available
| DOI
2024 | Published | Conference Paper | IST-REx-ID: 17456 |

Markov, I., Alimohammadi, K., Frantar, E., & Alistarh, D.-A. (2024). L-GreCo: Layerwise-adaptive gradient compression for efficient data-parallel deep learning. In P. Gibbons, G. Pekhimenko, & C. De Sa (Eds.), Proceedings of Machine Learning and Systems (Vol. 6). Athens, Greece: Association for Computing Machinery.
[Published Version]
View
| Files available
| Download Published Version (ext.)
| arXiv
2023 | Published | Conference Paper | IST-REx-ID: 14461 |

Markov, I., Vladu, A., Guo, Q., & Alistarh, D.-A. (2023). Quantized distributed training of large models with convergence guarantees. In Proceedings of the 40th International Conference on Machine Learning (Vol. 202, pp. 24020–24044). Honolulu, Hawaii, HI, United States: ML Research Press.
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv
2022 | Published | Conference Paper | IST-REx-ID: 12780 |

Markov, I., Ramezanikebrya, H., & Alistarh, D.-A. (2022). CGX: Adaptive system support for communication-efficient deep learning. In Proceedings of the 23rd ACM/IFIP International Middleware Conference (pp. 241–254). Quebec, QC, Canada: Association for Computing Machinery. https://doi.org/10.1145/3528535.3565248
[Published Version]
View
| Files available
| DOI
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 10432 |

Nadiradze, G., Markov, I., Chatterjee, B., Kungurtsev, V., & Alistarh, D.-A. (2021). Elastic consistency: A practical consistency model for distributed stochastic gradient descent. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, pp. 9037–9045). Virtual.
[Published Version]
View
| Files available
| Download Published Version (ext.)
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 10049 |

Klein, K., Pascual Perez, G., Walter, M., Kamath Hosdurg, C., Capretto, M., Cueto Noval, M., … Pietrzak, K. Z. (2021). Keep the dirt: tainted TreeKEM, adaptively and actively secure continuous group key agreement. In 2021 IEEE Symposium on Security and Privacy (pp. 268–284). San Francisco, CA, United States: IEEE. https://doi.org/10.1109/sp40001.2021.00035
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
2020 | Published | Conference Paper | IST-REx-ID: 15086 |

Faghri, F., Tabrizian, I., Markov, I., Alistarh, D.-A., Roy, D., & Ramezani-Kebrya, A. (2020). Adaptive gradient quantization for data-parallel SGD. In Advances in Neural Information Processing Systems (Vol. 33). Vancouver, Canada: Neural Information Processing Systems Foundation.
[Preprint]
View
| Download Preprint (ext.)
| arXiv