The beauty of random polytopes inscribed in the 2-sphere
Consider a random set of points on the unit sphere in ād, which can be either uniformly sampled or a Poisson point process. Its convex hull is a random inscribed polytope, whose boundary approximates the sphere. We focus on the case dā=ā3, for which there are elementary proofs and fascinating formulas for metric properties. In particular, we study the fraction of acute facets, the expected intrinsic volumes, the total edge length, and the distance to a fixed point. Finally we generalize the results to the ellipsoid with homeoid density.
1-15
1-15
Taylor and Francis
application/pdf