{"year":"2020","publication":"Proceedings of the National Academy of Sciences","pmid":1,"date_updated":"2021-11-25T15:35:58Z","publication_identifier":{"eissn":["1091-6490"],"issn":["0027-8424"]},"article_type":"original","type":"journal_article","abstract":[{"lang":"eng","text":"Biological membranes can dramatically accelerate the aggregation of normally soluble protein molecules into amyloid fibrils and alter the fibril morphologies, yet the molecular mechanisms through which this accelerated nucleation takes place are not yet understood. Here, we develop a coarse-grained model to systematically explore the effect that the structural properties of the lipid membrane and the nature of protein–membrane interactions have on the nucleation rates of amyloid fibrils. We identify two physically distinct nucleation pathways—protein-rich and lipid-rich—and quantify how the membrane fluidity and protein–membrane affinity control the relative importance of those molecular pathways. We find that the membrane’s susceptibility to reshaping and being incorporated into the fibrillar aggregates is a key determinant of its ability to promote protein aggregation. We then characterize the rates and the free-energy profile associated with this heterogeneous nucleation process, in which the surface itself participates in the aggregate structure. Finally, we compare quantitatively our data to experiments on membrane-catalyzed amyloid aggregation of α-synuclein, a protein implicated in Parkinson’s disease that predominately nucleates on membranes. More generally, our results provide a framework for understanding macromolecular aggregation on lipid membranes in a broad biological and biotechnological context."}],"date_created":"2021-11-25T15:07:09Z","citation":{"ieee":"J. Krausser, T. P. J. Knowles, and A. Šarić, “Physical mechanisms of amyloid nucleation on fluid membranes,” Proceedings of the National Academy of Sciences, vol. 117, no. 52. National Academy of Sciences, pp. 33090–33098, 2020.","apa":"Krausser, J., Knowles, T. P. J., & Šarić, A. (2020). Physical mechanisms of amyloid nucleation on fluid membranes. Proceedings of the National Academy of Sciences. National Academy of Sciences. https://doi.org/10.1073/pnas.2007694117","chicago":"Krausser, Johannes, Tuomas P. J. Knowles, and Anđela Šarić. “Physical Mechanisms of Amyloid Nucleation on Fluid Membranes.” Proceedings of the National Academy of Sciences. National Academy of Sciences, 2020. https://doi.org/10.1073/pnas.2007694117.","ama":"Krausser J, Knowles TPJ, Šarić A. Physical mechanisms of amyloid nucleation on fluid membranes. Proceedings of the National Academy of Sciences. 2020;117(52):33090-33098. doi:10.1073/pnas.2007694117","short":"J. Krausser, T.P.J. Knowles, A. Šarić, Proceedings of the National Academy of Sciences 117 (2020) 33090–33098.","ista":"Krausser J, Knowles TPJ, Šarić A. 2020. Physical mechanisms of amyloid nucleation on fluid membranes. Proceedings of the National Academy of Sciences. 117(52), 33090–33098.","mla":"Krausser, Johannes, et al. “Physical Mechanisms of Amyloid Nucleation on Fluid Membranes.” Proceedings of the National Academy of Sciences, vol. 117, no. 52, National Academy of Sciences, 2020, pp. 33090–98, doi:10.1073/pnas.2007694117."},"main_file_link":[{"url":"https://www.biorxiv.org/content/10.1101/2019.12.22.886267v2","open_access":"1"}],"article_processing_charge":"No","intvolume":" 117","month":"12","language":[{"iso":"eng"}],"acknowledgement":"We thank T. C. T. Michaels for reading the manuscript. This work was supported by the Academy of Medical Science (J.K. and A.Š.), the Cambridge Center for Misfolding Diseases (T.P.J.K.), the Biotechnology and Biological Sciences Research Council (T.P.J.K.), the Frances and Augustus Newman Foundation (T.P.J.K.), the European Research Council Grant PhysProt Agreement 337969, the Wellcome Trust (A.Š. and T.P.J.K.), the Royal Society (A.Š.), the Medical Research Council (J.K. and A.Š.), and the UK Materials and Molecular Modeling Hub for computational resources, which is partially funded by Engineering and Physical Sciences Research Council Grant EP/P020194/1.","status":"public","date_published":"2020-12-16T00:00:00Z","day":"16","scopus_import":"1","volume":117,"quality_controlled":"1","_id":"10336","doi":"10.1073/pnas.2007694117","author":[{"full_name":"Krausser, Johannes","last_name":"Krausser","first_name":"Johannes"},{"last_name":"Knowles","full_name":"Knowles, Tuomas P. J.","first_name":"Tuomas P. J."},{"orcid":"0000-0002-7854-2139","first_name":"Anđela","id":"bf63d406-f056-11eb-b41d-f263a6566d8b","last_name":"Šarić","full_name":"Šarić, Anđela"}],"oa_version":"Published Version","external_id":{"pmid":["33328273"]},"publication_status":"published","user_id":"8b945eb4-e2f2-11eb-945a-df72226e66a9","extern":"1","publisher":"National Academy of Sciences","page":"33090-33098","issue":"52","oa":1,"title":"Physical mechanisms of amyloid nucleation on fluid membranes"}