--- res: bibo_abstract: - The molecular machinery of life is largely created via self-organisation of individual molecules into functional assemblies. Minimal coarse-grained models, in which a whole macromolecule is represented by a small number of particles, can be of great value in identifying the main driving forces behind self-organisation in cell biology. Such models can incorporate data from both molecular and continuum scales, and their results can be directly compared to experiments. Here we review the state of the art of models for studying the formation and biological function of macromolecular assemblies in living organisms. We outline the key ingredients of each model and their main findings. We illustrate the contribution of this class of simulations to identifying the physical mechanisms behind life and diseases, and discuss their future developments.@eng bibo_authorlist: - foaf_Person: foaf_givenName: Anne E foaf_name: Hafner, Anne E foaf_surname: Hafner - foaf_Person: foaf_givenName: Johannes foaf_name: Krausser, Johannes foaf_surname: Krausser - foaf_Person: foaf_givenName: Anđela foaf_name: Šarić, Anđela foaf_surname: Šarić foaf_workInfoHomepage: http://www.librecat.org/personId=bf63d406-f056-11eb-b41d-f263a6566d8b orcid: 0000-0002-7854-2139 bibo_doi: 10.1016/j.sbi.2019.05.018 bibo_volume: 58 dct_date: 2019^xs_gYear dct_isPartOf: - http://id.crossref.org/issn/0959-440X dct_language: eng dct_publisher: Elsevier@ dct_subject: - molecular biology - structural biology dct_title: Minimal coarse-grained models for molecular self-organisation in biology@ fabio_hasPubmedId: '31226513' ...