{"author":[{"last_name":"Nam","first_name":"Phan","id":"404092F4-F248-11E8-B48F-1D18A9856A87","full_name":"Nam, Phan"},{"full_name":"Van Den Bosch, Hanne","first_name":"Hanne","last_name":"Van Den Bosch"}],"date_created":"2018-12-11T11:50:02Z","scopus_import":"1","main_file_link":[{"open_access":"1","url":"https://arxiv.org/abs/1603.07368"}],"quality_controlled":"1","user_id":"c635000d-4b10-11ee-a964-aac5a93f6ac1","publist_id":"6300","issue":"2","volume":20,"intvolume":" 20","date_published":"2017-06-01T00:00:00Z","title":"Nonexistence in Thomas Fermi-Dirac-von Weizsäcker theory with small nuclear charges","oa":1,"doi":"10.1007/s11040-017-9238-0","type":"journal_article","oa_version":"Submitted Version","publication":"Mathematical Physics, Analysis and Geometry","publication_status":"published","citation":{"mla":"Nam, Phan, and Hanne Van Den Bosch. “Nonexistence in Thomas Fermi-Dirac-von Weizsäcker Theory with Small Nuclear Charges.” Mathematical Physics, Analysis and Geometry, vol. 20, no. 2, 6, Springer, 2017, doi:10.1007/s11040-017-9238-0.","short":"P. Nam, H. Van Den Bosch, Mathematical Physics, Analysis and Geometry 20 (2017).","ieee":"P. Nam and H. Van Den Bosch, “Nonexistence in Thomas Fermi-Dirac-von Weizsäcker theory with small nuclear charges,” Mathematical Physics, Analysis and Geometry, vol. 20, no. 2. Springer, 2017.","ama":"Nam P, Van Den Bosch H. Nonexistence in Thomas Fermi-Dirac-von Weizsäcker theory with small nuclear charges. Mathematical Physics, Analysis and Geometry. 2017;20(2). doi:10.1007/s11040-017-9238-0","apa":"Nam, P., & Van Den Bosch, H. (2017). Nonexistence in Thomas Fermi-Dirac-von Weizsäcker theory with small nuclear charges. Mathematical Physics, Analysis and Geometry. Springer. https://doi.org/10.1007/s11040-017-9238-0","ista":"Nam P, Van Den Bosch H. 2017. Nonexistence in Thomas Fermi-Dirac-von Weizsäcker theory with small nuclear charges. Mathematical Physics, Analysis and Geometry. 20(2), 6.","chicago":"Nam, Phan, and Hanne Van Den Bosch. “Nonexistence in Thomas Fermi-Dirac-von Weizsäcker Theory with Small Nuclear Charges.” Mathematical Physics, Analysis and Geometry. Springer, 2017. https://doi.org/10.1007/s11040-017-9238-0."},"external_id":{"isi":["000401270000004"]},"article_processing_charge":"No","isi":1,"project":[{"name":"Structure of the Excitation Spectrum for Many-Body Quantum Systems","_id":"25C878CE-B435-11E9-9278-68D0E5697425","call_identifier":"FWF","grant_number":"P27533_N27"}],"status":"public","year":"2017","date_updated":"2023-09-20T11:53:35Z","publication_identifier":{"issn":["13850172"]},"month":"06","article_number":"6","_id":"1079","publisher":"Springer","day":"01","department":[{"_id":"RoSe"}],"language":[{"iso":"eng"}],"abstract":[{"lang":"eng","text":"We study the ionization problem in the Thomas-Fermi-Dirac-von Weizsäcker theory for atoms and molecules. We prove the nonexistence of minimizers for the energy functional when the number of electrons is large and the total nuclear charge is small. This nonexistence result also applies to external potentials decaying faster than the Coulomb potential. In the case of arbitrary nuclear charges, we obtain the nonexistence of stable minimizers and radial minimizers."}]}