TY - CONF AB - We consider concurrent mean-payoff games, a very well-studied class of two-player (player 1 vs player 2) zero-sum games on finite-state graphs where every transition is assigned a reward between 0 and 1, and the payoff function is the long-run average of the rewards. The value is the maximal expected payoff that player 1 can guarantee against all strategies of player 2. We consider the computation of the set of states with value 1 under finite-memory strategies for player 1, and our main results for the problem are as follows: (1) we present a polynomial-time algorithm; (2) we show that whenever there is a finite-memory strategy, there is a stationary strategy that does not need memory at all; and (3) we present an optimal bound (which is double exponential) on the patience of stationary strategies (where patience of a distribution is the inverse of the smallest positive probability and represents a complexity measure of a stationary strategy). AU - Chatterjee, Krishnendu AU - Ibsen-Jensen, Rasmus ID - 10796 IS - 1 SN - 978-161197374-7 T2 - Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms TI - The value 1 problem under finite-memory strategies for concurrent mean-payoff games VL - 2015 ER -