--- _id: '1120' abstract: - lang: eng text: 'The existence of a self-localization transition in the polaron problem has been under an active debate ever since Landau suggested it 83 years ago. Here we reveal the self-localization transition for the rotational analogue of the polaron -- the angulon quasiparticle. We show that, unlike for the polarons, self-localization of angulons occurs at finite impurity-bath coupling already at the mean-field level. The transition is accompanied by the spherical-symmetry breaking of the angulon ground state and a discontinuity in the first derivative of the ground-state energy. Moreover, the type of the symmetry breaking is dictated by the symmetry of the microscopic impurity-bath interaction, which leads to a number of distinct self-localized states. The predicted effects can potentially be addressed in experiments on cold molecules trapped in superfluid helium droplets and ultracold quantum gases, as well as on electronic excitations in solids and Bose-Einstein condensates. ' article_number: '033608' article_processing_charge: No author: - first_name: Xiang full_name: Li, Xiang id: 4B7E523C-F248-11E8-B48F-1D18A9856A87 last_name: Li - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Li X, Seiringer R, Lemeshko M. Angular self-localization of impurities rotating in a bosonic bath. Physical Review A. 2017;95(3). doi:10.1103/PhysRevA.95.033608 apa: Li, X., Seiringer, R., & Lemeshko, M. (2017). Angular self-localization of impurities rotating in a bosonic bath. Physical Review A. American Physical Society. https://doi.org/10.1103/PhysRevA.95.033608 chicago: Li, Xiang, Robert Seiringer, and Mikhail Lemeshko. “Angular Self-Localization of Impurities Rotating in a Bosonic Bath.” Physical Review A. American Physical Society, 2017. https://doi.org/10.1103/PhysRevA.95.033608. ieee: X. Li, R. Seiringer, and M. Lemeshko, “Angular self-localization of impurities rotating in a bosonic bath,” Physical Review A, vol. 95, no. 3. American Physical Society, 2017. ista: Li X, Seiringer R, Lemeshko M. 2017. Angular self-localization of impurities rotating in a bosonic bath. Physical Review A. 95(3), 033608. mla: Li, Xiang, et al. “Angular Self-Localization of Impurities Rotating in a Bosonic Bath.” Physical Review A, vol. 95, no. 3, 033608, American Physical Society, 2017, doi:10.1103/PhysRevA.95.033608. short: X. Li, R. Seiringer, M. Lemeshko, Physical Review A 95 (2017). date_created: 2018-12-11T11:50:15Z date_published: 2017-03-06T00:00:00Z date_updated: 2023-09-20T11:30:58Z day: '06' department: - _id: MiLe - _id: RoSe doi: 10.1103/PhysRevA.95.033608 ec_funded: 1 external_id: isi: - '000395981900009' intvolume: ' 95' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1610.04908 month: '03' oa: 1 oa_version: Published Version project: - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems - _id: 25C878CE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P27533_N27 name: Structure of the Excitation Spectrum for Many-Body Quantum Systems - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment publication: Physical Review A publication_identifier: issn: - '24699926' publication_status: published publisher: American Physical Society publist_id: '6242' quality_controlled: '1' related_material: record: - id: '8958' relation: dissertation_contains status: public scopus_import: '1' status: public title: Angular self-localization of impurities rotating in a bosonic bath type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 95 year: '2017' ...