--- res: bibo_abstract: - "Plant hormone auxin and its transport between cells belong to the most important\r\nmechanisms controlling plant development. Auxin itself could change localization of PINs and\r\nthereby control direction of its own flow. We performed an expression profiling experiment\r\nin Arabidopsis roots to identify potential regulators of PIN polarity which are transcriptionally\r\nregulated by auxin signalling. We identified several novel regulators and performed a detailed\r\ncharacterization of the transcription factor WRKY23 (At2g47260) and its role in auxin\r\nfeedback on PIN polarity. Gain-of-function and dominant-negative mutants revealed that\r\nWRKY23 plays a crucial role in mediating the auxin effect on PIN polarity. In concordance,\r\ntypical polar auxin transport processes such as gravitropism and leaf vascular pattern\r\nformation were disturbed by interfering with WRKY23 function.\r\nIn order to identify direct targets of WRKY23, we performed consequential expression\r\nprofiling experiments using a WRKY23 inducible gain-of-function line and dominant-negative\r\nWRKY23 line that is defunct in PIN re-arrangement. Among several genes mostly related to\r\nthe groups of cell wall and defense process regulators, we identified LYSINE-HISTIDINE\r\nTRANSPORTER 1 (LHT1; At5g40780), a small amino acid permease gene from the amino\r\nacid/auxin permease family (AAAP), we present its detailed characterisation in auxin feedback\r\non PIN repolarization, identified its transcriptional regulation, we propose a potential\r\nmechanism of its action. Moreover, we identified also a member of receptor-like protein\r\nkinase LRR-RLK (LEUCINE-RICH REPEAT TRANSMEMBRANE PROTEIN KINASE PROTEIN 1;\r\nLRRK1; At1g05700), which also affects auxin-dependent PIN re-arrangement. We described\r\nits transcriptional behaviour, subcellular localization. Based on global expression data, we\r\ntried to identify ligand responsible for mechanism of signalling and suggest signalling partner\r\nand interactors. Additionally, we described role of novel phytohormone group, strigolactone,\r\nin auxin-dependent PIN re-arrangement, that could be a fundament for future studies in this\r\nfield.\r\nOur results provide first insights into an auxin transcriptional network targeting PIN\r\nlocalization and thus regulating plant development. We highlighted WRKY23 transcriptional\r\nnetwork and characterised its mediatory role in plant development. We identified direct\r\neffectors of this network, LHT1 and LRRK1, and describe their roles in PIN re-arrangement and\r\nPIN-dependent auxin transport processes.@eng" bibo_authorlist: - foaf_Person: foaf_givenName: Tomas foaf_name: Prat, Tomas foaf_surname: Prat foaf_workInfoHomepage: http://www.librecat.org/personId=3DA3BFEE-F248-11E8-B48F-1D18A9856A87 dct_date: 2017^xs_gYear dct_isPartOf: - http://id.crossref.org/issn/2663-337X dct_language: eng dct_publisher: Institute of Science and Technology Austria@ dct_title: Identification of novel regulators of PIN polarity and development of novel auxin sensor@ ...