{"article_processing_charge":"Yes (via OA deal)","publisher":"Elsevier","publication_identifier":{"issn":["0021-8693"]},"quality_controlled":"1","external_id":{"isi":["000861841100004"]},"ec_funded":1,"date_created":"2022-07-08T11:40:07Z","oa":1,"has_accepted_license":"1","project":[{"grant_number":"754411","call_identifier":"H2020","_id":"260C2330-B435-11E9-9278-68D0E5697425","name":"ISTplus - Postdoctoral Fellowships"}],"user_id":"4359f0d1-fa6c-11eb-b949-802e58b17ae8","issue":"11","year":"2022","volume":609,"file_date_updated":"2023-02-02T07:32:48Z","tmp":{"name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)","short":"CC BY (4.0)","legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode","image":"/images/cc_by.png"},"day":"01","scopus_import":"1","doi":"10.1016/j.jalgebra.2022.06.017","citation":{"apa":"Brown, A., & Romanov, A. (2022). Contravariant pairings between standard Whittaker modules and Verma modules. Journal of Algebra. Elsevier. https://doi.org/10.1016/j.jalgebra.2022.06.017","ama":"Brown A, Romanov A. Contravariant pairings between standard Whittaker modules and Verma modules. Journal of Algebra. 2022;609(11):145-179. doi:10.1016/j.jalgebra.2022.06.017","ieee":"A. Brown and A. Romanov, “Contravariant pairings between standard Whittaker modules and Verma modules,” Journal of Algebra, vol. 609, no. 11. Elsevier, pp. 145–179, 2022.","short":"A. Brown, A. Romanov, Journal of Algebra 609 (2022) 145–179.","chicago":"Brown, Adam, and Anna Romanov. “Contravariant Pairings between Standard Whittaker Modules and Verma Modules.” Journal of Algebra. Elsevier, 2022. https://doi.org/10.1016/j.jalgebra.2022.06.017.","ista":"Brown A, Romanov A. 2022. Contravariant pairings between standard Whittaker modules and Verma modules. Journal of Algebra. 609(11), 145–179.","mla":"Brown, Adam, and Anna Romanov. “Contravariant Pairings between Standard Whittaker Modules and Verma Modules.” Journal of Algebra, vol. 609, no. 11, Elsevier, 2022, pp. 145–79, doi:10.1016/j.jalgebra.2022.06.017."},"date_updated":"2024-10-09T21:02:44Z","acknowledgement":"We thank Catharina Stroppel and Jens Niklas Eberhardt for interesting discussions. The first author acknowledges the support of the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 754411. The second author is supported by the National Science Foundation Award No. 1803059 and the Australian Research Council grant DP170101579.","department":[{"_id":"HeEd"}],"oa_version":"Published Version","file":[{"date_updated":"2023-02-02T07:32:48Z","access_level":"open_access","date_created":"2023-02-02T07:32:48Z","file_size":582962,"content_type":"application/pdf","file_name":"2022_JournalAlgebra_Brown.pdf","checksum":"82abaee3d7837f703e499a9ecbb25b7c","relation":"main_file","creator":"dernst","file_id":"12473","success":1}],"corr_author":"1","keyword":["Algebra and Number Theory"],"intvolume":" 609","publication_status":"published","article_type":"original","author":[{"last_name":"Brown","id":"70B7FDF6-608D-11E9-9333-8535E6697425","first_name":"Adam","full_name":"Brown, Adam"},{"last_name":"Romanov","first_name":"Anna","full_name":"Romanov, Anna"}],"type":"journal_article","_id":"11545","publication":"Journal of Algebra","ddc":["510"],"title":"Contravariant pairings between standard Whittaker modules and Verma modules","language":[{"iso":"eng"}],"isi":1,"date_published":"2022-11-01T00:00:00Z","abstract":[{"lang":"eng","text":"We classify contravariant pairings between standard Whittaker modules and Verma modules over a complex semisimple Lie algebra. These contravariant pairings are useful in extending several classical techniques for category O to the Miličić–Soergel category N . We introduce a class of costandard modules which generalize dual Verma modules, and describe canonical maps from standard to costandard modules in terms of contravariant pairings.\r\nWe show that costandard modules have unique irreducible submodules and share the same composition factors as the corresponding standard Whittaker modules. We show that costandard modules give an algebraic characterization of the global sections of costandard twisted Harish-Chandra sheaves on the associated flag variety, which are defined using holonomic duality of D-modules. We prove that with these costandard modules, blocks of category\r\nN have the structure of highest weight categories and we establish a BGG reciprocity theorem for N ."}],"month":"11","page":"145-179","status":"public"}