Lower bounds for fully dynamic connectivity problems in graphs
We prove lower bounds on the complexity of maintaining fully dynamic k -edge or k -vertex connectivity in plane graphs and in (k-1) -vertex connected graphs. We show an amortized lower bound of Ω (log n / {k (log log n} + log b)) per edge insertion, deletion, or query operation in the cell probe model, where b is the word size of the machine and n is the number of vertices in G . We also show an amortized lower bound of Ω (log n /(log log n + log b)) per operation for fully dynamic planarity testing in embedded graphs. These are the first lower bounds for fully dynamic connectivity problems.
22
3
351-362
351-362
Springer Nature