{"date_created":"2022-08-08T10:58:29Z","status":"public","citation":{"ieee":"M. Henzinger and P. Peng, “Constant-time dynamic weight approximation for minimum spanning forest,” Information and Computation, vol. 281, no. 12. Elsevier, 2021.","apa":"Henzinger, M., & Peng, P. (2021). Constant-time dynamic weight approximation for minimum spanning forest. Information and Computation. Elsevier. https://doi.org/10.1016/j.ic.2021.104805","mla":"Henzinger, Monika, and Pan Peng. “Constant-Time Dynamic Weight Approximation for Minimum Spanning Forest.” Information and Computation, vol. 281, no. 12, 104805, Elsevier, 2021, doi:10.1016/j.ic.2021.104805.","short":"M. Henzinger, P. Peng, Information and Computation 281 (2021).","ista":"Henzinger M, Peng P. 2021. Constant-time dynamic weight approximation for minimum spanning forest. Information and Computation. 281(12), 104805.","chicago":"Henzinger, Monika, and Pan Peng. “Constant-Time Dynamic Weight Approximation for Minimum Spanning Forest.” Information and Computation. Elsevier, 2021. https://doi.org/10.1016/j.ic.2021.104805.","ama":"Henzinger M, Peng P. Constant-time dynamic weight approximation for minimum spanning forest. Information and Computation. 2021;281(12). doi:10.1016/j.ic.2021.104805"},"publication":"Information and Computation","publisher":"Elsevier","intvolume":" 281","abstract":[{"lang":"eng","text":"We give two fully dynamic algorithms that maintain a (1 + ε)-approximation of the weight M of a minimum spanning forest (MSF) of an n-node graph G with edges weights in [1, W ], for any ε > 0. (1) Our deterministic algorithm takes O (W 2 log W /ε3) worst-case update time, which is O (1) if both W and ε are constants. (2) Our randomized (Monte-Carlo style) algorithm works with high probability and runs in worst-case O (log W /ε4) update time if W = O ((m∗)1/6/log2/3 n), where m∗ is the minimum number of edges in the graph throughout all the updates. It works even against an adaptive adversary. We complement our algorithmic results with two cell-probe lower bounds for dynamically maintaining an approximation of the weight of an MSF of a graph."}],"language":[{"iso":"eng"}],"_id":"11756","date_published":"2021-12-01T00:00:00Z","issue":"12","year":"2021","day":"01","oa_version":"Preprint","type":"journal_article","publication_status":"published","title":"Constant-time dynamic weight approximation for minimum spanning forest","doi":"10.1016/j.ic.2021.104805","scopus_import":"1","publication_identifier":{"issn":["0890-5401"]},"external_id":{"arxiv":["2011.00977"]},"article_type":"original","main_file_link":[{"url":"https://arxiv.org/abs/2011.00977","open_access":"1"}],"month":"12","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","author":[{"id":"540c9bbd-f2de-11ec-812d-d04a5be85630","orcid":"0000-0002-5008-6530","last_name":"Henzinger","first_name":"Monika H","full_name":"Henzinger, Monika H"},{"first_name":"Pan","full_name":"Peng, Pan","last_name":"Peng"}],"oa":1,"quality_controlled":"1","volume":281,"extern":"1","date_updated":"2024-11-06T12:09:22Z","article_number":"104805","arxiv":1,"article_processing_charge":"No"}