@article{12144, abstract = {The phytohormone auxin is the major coordinative signal in plant development1, mediating transcriptional reprogramming by a well-established canonical signalling pathway. TRANSPORT INHIBITOR RESPONSE 1 (TIR1)/AUXIN-SIGNALING F-BOX (AFB) auxin receptors are F-box subunits of ubiquitin ligase complexes. In response to auxin, they associate with Aux/IAA transcriptional repressors and target them for degradation via ubiquitination2,3. Here we identify adenylate cyclase (AC) activity as an additional function of TIR1/AFB receptors across land plants. Auxin, together with Aux/IAAs, stimulates cAMP production. Three separate mutations in the AC motif of the TIR1 C-terminal region, all of which abolish the AC activity, each render TIR1 ineffective in mediating gravitropism and sustained auxin-induced root growth inhibition, and also affect auxin-induced transcriptional regulation. These results highlight the importance of TIR1/AFB AC activity in canonical auxin signalling. They also identify a unique phytohormone receptor cassette combining F-box and AC motifs, and the role of cAMP as a second messenger in plants.}, author = {Qi, Linlin and Kwiatkowski, Mateusz and Chen, Huihuang and Hörmayer, Lukas and Sinclair, Scott A and Zou, Minxia and del Genio, Charo I. and Kubeš, Martin F. and Napier, Richard and Jaworski, Krzysztof and Friml, Jiří}, issn = {1476-4687}, journal = {Nature}, number = {7934}, pages = {133--138}, publisher = {Springer Nature}, title = {{Adenylate cyclase activity of TIR1/AFB auxin receptors in plants}}, doi = {10.1038/s41586-022-05369-7}, volume = {611}, year = {2022}, }