{"department":[{"_id":"LaEr"}],"citation":{"apa":"Cipolloni, G., Erdös, L., & Schröder, D. J. (2022). Rank-uniform local law for Wigner matrices. Forum of Mathematics, Sigma. Cambridge University Press. https://doi.org/10.1017/fms.2022.86","ista":"Cipolloni G, Erdös L, Schröder DJ. 2022. Rank-uniform local law for Wigner matrices. Forum of Mathematics, Sigma. 10, e96.","chicago":"Cipolloni, Giorgio, László Erdös, and Dominik J Schröder. “Rank-Uniform Local Law for Wigner Matrices.” Forum of Mathematics, Sigma. Cambridge University Press, 2022. https://doi.org/10.1017/fms.2022.86.","ama":"Cipolloni G, Erdös L, Schröder DJ. Rank-uniform local law for Wigner matrices. Forum of Mathematics, Sigma. 2022;10. doi:10.1017/fms.2022.86","short":"G. Cipolloni, L. Erdös, D.J. Schröder, Forum of Mathematics, Sigma 10 (2022).","ieee":"G. Cipolloni, L. Erdös, and D. J. Schröder, “Rank-uniform local law for Wigner matrices,” Forum of Mathematics, Sigma, vol. 10. Cambridge University Press, 2022.","mla":"Cipolloni, Giorgio, et al. “Rank-Uniform Local Law for Wigner Matrices.” Forum of Mathematics, Sigma, vol. 10, e96, Cambridge University Press, 2022, doi:10.1017/fms.2022.86."},"doi":"10.1017/fms.2022.86","language":[{"iso":"eng"}],"file":[{"success":1,"date_updated":"2023-01-24T10:02:40Z","access_level":"open_access","file_id":"12356","file_size":817089,"relation":"main_file","file_name":"2022_ForumMath_Cipolloni.pdf","date_created":"2023-01-24T10:02:40Z","checksum":"94a049aeb1eea5497aa097712a73c400","content_type":"application/pdf","creator":"dernst"}],"date_updated":"2025-04-14T07:57:18Z","publication_status":"published","has_accepted_license":"1","type":"journal_article","title":"Rank-uniform local law for Wigner matrices","isi":1,"acknowledgement":"L.E. acknowledges support by ERC Advanced Grant ‘RMTBeyond’ No. 101020331. D.S. acknowledges the support of Dr. Max Rössler, the Walter Haefner Foundation and the ETH Zürich Foundation.","scopus_import":"1","author":[{"first_name":"Giorgio","orcid":"0000-0002-4901-7992","full_name":"Cipolloni, Giorgio","id":"42198EFA-F248-11E8-B48F-1D18A9856A87","last_name":"Cipolloni"},{"id":"4DBD5372-F248-11E8-B48F-1D18A9856A87","orcid":"0000-0001-5366-9603","full_name":"Erdös, László","last_name":"Erdös","first_name":"László"},{"first_name":"Dominik J","last_name":"Schröder","orcid":"0000-0002-2904-1856","id":"408ED176-F248-11E8-B48F-1D18A9856A87","full_name":"Schröder, Dominik J"}],"keyword":["Computational Mathematics","Discrete Mathematics and Combinatorics","Geometry and Topology","Mathematical Physics","Statistics and Probability","Algebra and Number Theory","Theoretical Computer Science","Analysis"],"publisher":"Cambridge University Press","ec_funded":1,"status":"public","file_date_updated":"2023-01-24T10:02:40Z","publication_identifier":{"issn":["2050-5094"]},"abstract":[{"text":"We prove a general local law for Wigner matrices that optimally handles observables of arbitrary rank and thus unifies the well-known averaged and isotropic local laws. As an application, we prove a central limit theorem in quantum unique ergodicity (QUE): that is, we show that the quadratic forms of a general deterministic matrix A on the bulk eigenvectors of a Wigner matrix have approximately Gaussian fluctuation. For the bulk spectrum, we thus generalise our previous result [17] as valid for test matrices A of large rank as well as the result of Benigni and Lopatto [7] as valid for specific small-rank observables.","lang":"eng"}],"user_id":"4359f0d1-fa6c-11eb-b949-802e58b17ae8","ddc":["510"],"date_published":"2022-10-27T00:00:00Z","article_number":"e96","external_id":{"isi":["000873719200001"]},"volume":10,"corr_author":"1","_id":"12148","day":"27","license":"https://creativecommons.org/licenses/by/4.0/","month":"10","publication":"Forum of Mathematics, Sigma","oa":1,"tmp":{"short":"CC BY (4.0)","image":"/images/cc_by.png","name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)","legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode"},"year":"2022","article_type":"original","article_processing_charge":"No","quality_controlled":"1","project":[{"grant_number":"101020331","call_identifier":"H2020","_id":"62796744-2b32-11ec-9570-940b20777f1d","name":"Random matrices beyond Wigner-Dyson-Mehta"}],"intvolume":" 10","oa_version":"Published Version","date_created":"2023-01-12T12:07:30Z"}