---
res:
bibo_abstract:
- We consider N×N random matrices of the form H = W + V where W is a real symmetric
or complex Hermitian Wigner matrix and V is a random or deterministic, real, diagonal
matrix whose entries are independent of W. We assume subexponential decay for
the matrix entries of W, and we choose V so that the eigenvalues ofW and V are
typically of the same order. For a large class of diagonal matrices V , we show
that the local statistics in the bulk of the spectrum are universal in the limit
of large N.@eng
bibo_authorlist:
- foaf_Person:
foaf_givenName: Jioon
foaf_name: Lee, Jioon
foaf_surname: Lee
- foaf_Person:
foaf_givenName: Kevin
foaf_name: Schnelli, Kevin
foaf_surname: Schnelli
foaf_workInfoHomepage: http://www.librecat.org/personId=434AD0AE-F248-11E8-B48F-1D18A9856A87
orcid: 0000-0003-0954-3231
- foaf_Person:
foaf_givenName: Ben
foaf_name: Stetler, Ben
foaf_surname: Stetler
- foaf_Person:
foaf_givenName: Horngtzer
foaf_name: Yau, Horngtzer
foaf_surname: Yau
bibo_doi: 10.1214/15-AOP1023
bibo_issue: '3'
bibo_volume: 44
dct_date: 2016^xs_gYear
dct_language: eng
dct_publisher: Institute of Mathematical Statistics@
dct_title: Bulk universality for deformed wigner matrices@
...