{"date_updated":"2024-10-09T21:04:45Z","month":"05","department":[{"_id":"LaEr"}],"day":"01","title":"Small deviation estimates for the largest eigenvalue of Wigner matrices","year":"2023","language":[{"iso":"eng"}],"publication":"Bernoulli","abstract":[{"lang":"eng","text":"We establish precise right-tail small deviation estimates for the largest eigenvalue of real symmetric and complex Hermitian matrices whose entries are independent random variables with uniformly bounded moments. The proof relies on a Green function comparison along a continuous interpolating matrix flow for a long time. Less precise estimates are also obtained in the left tail."}],"scopus_import":"1","article_processing_charge":"No","corr_author":"1","oa":1,"author":[{"full_name":"Erdös, László","orcid":"0000-0001-5366-9603","first_name":"László","last_name":"Erdös","id":"4DBD5372-F248-11E8-B48F-1D18A9856A87"},{"id":"7902bdb1-a2a4-11eb-a164-c9216f71aea3","last_name":"Xu","first_name":"Yuanyuan","full_name":"Xu, Yuanyuan","orcid":"0000-0003-1559-1205"}],"external_id":{"arxiv":["2112.12093 "],"isi":["000947270100008"]},"volume":29,"publication_status":"published","publication_identifier":{"issn":["1350-7265"]},"publisher":"Bernoulli Society for Mathematical Statistics and Probability","doi":"10.3150/22-BEJ1490","article_type":"original","date_created":"2023-03-05T23:01:05Z","citation":{"mla":"Erdös, László, and Yuanyuan Xu. “Small Deviation Estimates for the Largest Eigenvalue of Wigner Matrices.” Bernoulli, vol. 29, no. 2, Bernoulli Society for Mathematical Statistics and Probability, 2023, pp. 1063–79, doi:10.3150/22-BEJ1490.","ama":"Erdös L, Xu Y. Small deviation estimates for the largest eigenvalue of Wigner matrices. Bernoulli. 2023;29(2):1063-1079. doi:10.3150/22-BEJ1490","chicago":"Erdös, László, and Yuanyuan Xu. “Small Deviation Estimates for the Largest Eigenvalue of Wigner Matrices.” Bernoulli. Bernoulli Society for Mathematical Statistics and Probability, 2023. https://doi.org/10.3150/22-BEJ1490.","ieee":"L. Erdös and Y. Xu, “Small deviation estimates for the largest eigenvalue of Wigner matrices,” Bernoulli, vol. 29, no. 2. Bernoulli Society for Mathematical Statistics and Probability, pp. 1063–1079, 2023.","short":"L. Erdös, Y. Xu, Bernoulli 29 (2023) 1063–1079.","ista":"Erdös L, Xu Y. 2023. Small deviation estimates for the largest eigenvalue of Wigner matrices. Bernoulli. 29(2), 1063–1079.","apa":"Erdös, L., & Xu, Y. (2023). Small deviation estimates for the largest eigenvalue of Wigner matrices. Bernoulli. Bernoulli Society for Mathematical Statistics and Probability. https://doi.org/10.3150/22-BEJ1490"},"ec_funded":1,"main_file_link":[{"url":"https://arxiv.org/abs/2112.12093","open_access":"1"}],"oa_version":"Preprint","_id":"12707","issue":"2","intvolume":" 29","date_published":"2023-05-01T00:00:00Z","arxiv":1,"page":"1063-1079","status":"public","quality_controlled":"1","project":[{"name":"Random matrices beyond Wigner-Dyson-Mehta","grant_number":"101020331","call_identifier":"H2020","_id":"62796744-2b32-11ec-9570-940b20777f1d"}],"user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","type":"journal_article","isi":1}