{"date_updated":"2021-01-12T06:49:37Z","date_published":"2016-10-06T00:00:00Z","abstract":[{"text":"Cell migration is central to a multitude of physiological processes, including embryonic development, immune surveillance, and wound healing, and deregulated migration is key to cancer dissemination. Decades of investigations have uncovered many of the molecular and physical mechanisms underlying cell migration. Together with protrusion extension and cell body retraction, adhesion to the substrate via specific focal adhesion points has long been considered an essential step in cell migration. Although this is true for cells moving on two-dimensional substrates, recent studies have demonstrated that focal adhesions are not required for cells moving in three dimensions, in which confinement is sufficient to maintain a cell in contact with its substrate. Here, we review the investigations that have led to challenging the requirement of specific adhesions for migration, discuss the physical mechanisms proposed for cell body translocation during focal adhesion-independent migration, and highlight the remaining open questions for the future.","lang":"eng"}],"date_created":"2018-12-11T11:51:08Z","page":"469 - 490","user_id":"3E5EF7F0-F248-11E8-B48F-1D18A9856A87","department":[{"_id":"MiSi"}],"doi":"10.1146/annurev-cellbio-111315-125341","title":"Focal adhesion-independent cell migration","acknowledgement":"We would like to thank Dani Bodor for critical comments on the manuscript and Guillaume Salbreux for discussions. The authors are supported by the United Kingdom's Medical Research Council (MRC) (E.K.P. and I.M.A.; core funding to the MRC Laboratory for Molecular Cell Biology), by the European Research Council [ERC GA 311637 (E.K.P.) and ERC GA 281556 (M.S.)], and by a START award from the Austrian Science Foundation (M.S.).","quality_controlled":"1","oa_version":"None","author":[{"full_name":"Paluch, Ewa","first_name":"Ewa","last_name":"Paluch"},{"full_name":"Aspalter, Irene","first_name":"Irene","last_name":"Aspalter"},{"first_name":"Michael K","full_name":"Sixt, Michael K","last_name":"Sixt","id":"41E9FBEA-F248-11E8-B48F-1D18A9856A87","orcid":"0000-0002-6620-9179"}],"month":"10","publication_status":"published","intvolume":" 32","language":[{"iso":"eng"}],"publist_id":"6031","publisher":"Annual Reviews","type":"journal_article","project":[{"grant_number":"281556","_id":"25A603A2-B435-11E9-9278-68D0E5697425","name":"Cytoskeletal force generation and force transduction of migrating leukocytes (EU)","call_identifier":"FP7"},{"grant_number":"Y 564-B12","name":"Cytoskeletal force generation and transduction of leukocytes (FWF)","_id":"25A8E5EA-B435-11E9-9278-68D0E5697425","call_identifier":"FWF"}],"ec_funded":1,"day":"06","scopus_import":1,"citation":{"apa":"Paluch, E., Aspalter, I., & Sixt, M. K. (2016). Focal adhesion-independent cell migration. Annual Review of Cell and Developmental Biology. Annual Reviews. https://doi.org/10.1146/annurev-cellbio-111315-125341","ista":"Paluch E, Aspalter I, Sixt MK. 2016. Focal adhesion-independent cell migration. Annual Review of Cell and Developmental Biology. 32, 469–490.","chicago":"Paluch, Ewa, Irene Aspalter, and Michael K Sixt. “Focal Adhesion-Independent Cell Migration.” Annual Review of Cell and Developmental Biology. Annual Reviews, 2016. https://doi.org/10.1146/annurev-cellbio-111315-125341.","ieee":"E. Paluch, I. Aspalter, and M. K. Sixt, “Focal adhesion-independent cell migration,” Annual Review of Cell and Developmental Biology, vol. 32. Annual Reviews, pp. 469–490, 2016.","mla":"Paluch, Ewa, et al. “Focal Adhesion-Independent Cell Migration.” Annual Review of Cell and Developmental Biology, vol. 32, Annual Reviews, 2016, pp. 469–90, doi:10.1146/annurev-cellbio-111315-125341.","short":"E. Paluch, I. Aspalter, M.K. Sixt, Annual Review of Cell and Developmental Biology 32 (2016) 469–490.","ama":"Paluch E, Aspalter I, Sixt MK. Focal adhesion-independent cell migration. Annual Review of Cell and Developmental Biology. 2016;32:469-490. doi:10.1146/annurev-cellbio-111315-125341"},"status":"public","year":"2016","volume":32,"publication":"Annual Review of Cell and Developmental Biology","_id":"1285"}