--- _id: '12972' abstract: - lang: eng text: Embroidery is a long-standing and high-quality approach to making logos and images on textiles. Nowadays, it can also be performed via automated machines that weave threads with high spatial accuracy. A characteristic feature of the appearance of the threads is a high degree of anisotropy. The anisotropic behavior is caused by depositing thin but long strings of thread. As a result, the stitched patterns convey both color and direction. Artists leverage this anisotropic behavior to enhance pure color images with textures, illusions of motion, or depth cues. However, designing colorful embroidery patterns with prescribed directionality is a challenging task, one usually requiring an expert designer. In this work, we propose an interactive algorithm that generates machine-fabricable embroidery patterns from multi-chromatic images equipped with user-specified directionality fields.We cast the problem of finding a stitching pattern into vector theory. To find a suitable stitching pattern, we extract sources and sinks from the divergence field of the vector field extracted from the input and use them to trace streamlines. We further optimize the streamlines to guarantee a smooth and connected stitching pattern. The generated patterns approximate the color distribution constrained by the directionality field. To allow for further artistic control, the trade-off between color match and directionality match can be interactively explored via an intuitive slider. We showcase our approach by fabricating several embroidery paths. acknowledgement: This work was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 715767 – MATERIALIZABLE), and FWF Lise Meitner (Grant M 3319). We thank the anonymous reviewers for their insightful feedback; Solal Pirelli, Shardul Chiplunkar, and Paola Mejia for proofreading; everyone in the visual computing group at ISTA for inspiring lunch and coffee breaks; Thibault Tricard for help producing the results of Phasor Noise. article_processing_charge: No article_type: original author: - first_name: Zhenyuan full_name: Liu, Zhenyuan id: 70f0d7cf-ae65-11ec-a14f-89dfc5505b19 last_name: Liu orcid: 0000-0001-9200-5690 - first_name: Michael full_name: Piovarci, Michael id: 62E473F4-5C99-11EA-A40E-AF823DDC885E last_name: Piovarci - first_name: Christian full_name: Hafner, Christian id: 400429CC-F248-11E8-B48F-1D18A9856A87 last_name: Hafner - first_name: Raphael full_name: Charrondiere, Raphael id: a3a24133-2cc7-11ec-be88-8ddaf6f464b1 last_name: Charrondiere - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 citation: ama: Liu Z, Piovarci M, Hafner C, Charrondiere R, Bickel B. Directionality-aware design of embroidery patterns. Computer Graphics Forum. 2023;42(2):397-409. doi:10.1111/cgf.14770 apa: 'Liu, Z., Piovarci, M., Hafner, C., Charrondiere, R., & Bickel, B. (2023). Directionality-aware design of embroidery patterns. Computer Graphics Forum. Saarbrucken, Germany: Wiley. https://doi.org/10.1111/cgf.14770 ' chicago: Liu, Zhenyuan, Michael Piovarci, Christian Hafner, Raphael Charrondiere, and Bernd Bickel. “Directionality-Aware Design of Embroidery Patterns.” Computer Graphics Forum. Wiley, 2023. https://doi.org/10.1111/cgf.14770 . ieee: Z. Liu, M. Piovarci, C. Hafner, R. Charrondiere, and B. Bickel, “Directionality-aware design of embroidery patterns,” Computer Graphics Forum, vol. 42, no. 2. Wiley, pp. 397–409, 2023. ista: Liu Z, Piovarci M, Hafner C, Charrondiere R, Bickel B. 2023. Directionality-aware design of embroidery patterns. Computer Graphics Forum. 42(2), 397–409. mla: Liu, Zhenyuan, et al. “Directionality-Aware Design of Embroidery Patterns.” Computer Graphics Forum, vol. 42, no. 2, Wiley, 2023, pp. 397–409, doi:10.1111/cgf.14770 . short: Z. Liu, M. Piovarci, C. Hafner, R. Charrondiere, B. Bickel, Computer Graphics Forum 42 (2023) 397–409. conference: end_date: 2023-05-12 location: Saarbrucken, Germany name: 'EG: Eurographics' start_date: 2023-05-08 date_created: 2023-05-16T08:47:25Z date_published: 2023-05-08T00:00:00Z date_updated: 2023-08-01T14:47:05Z day: '08' ddc: - '004' department: - _id: BeBi doi: '10.1111/cgf.14770 ' ec_funded: 1 external_id: isi: - '001000062600033' file: - access_level: open_access checksum: 4c188c2be4745467a8790bbf5d6491aa content_type: application/pdf creator: mpiovarc date_created: 2023-05-16T08:28:37Z date_updated: 2023-05-16T08:28:37Z file_id: '12974' file_name: Zhenyuan2023.pdf file_size: 24003702 relation: main_file success: 1 file_date_updated: 2023-05-16T08:28:37Z has_accepted_license: '1' intvolume: ' 42' isi: 1 issue: '2' keyword: - embroidery - design - directionality - density - image language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '05' oa: 1 oa_version: Published Version page: 397-409 project: - _id: eb901961-77a9-11ec-83b8-f5c883a62027 grant_number: M03319 name: Perception-Aware Appearance Fabrication - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: Computer Graphics Forum publication_identifier: issn: - 1467-8659 publication_status: published publisher: Wiley quality_controlled: '1' status: public title: Directionality-aware design of embroidery patterns tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 42 year: '2023' ...