--- _id: '13049' abstract: - lang: eng text: "We propose a computational design approach for covering a surface with individually addressable RGB LEDs, effectively forming a low-resolution surface screen. To achieve a low-cost and scalable approach, we propose creating designs from flat PCB panels bent in-place along the surface of a 3D printed core. Working with standard rigid PCBs enables the use of\r\nestablished PCB manufacturing services, allowing the fabrication of designs with several hundred LEDs. \r\nOur approach optimizes the PCB geometry for folding, and then jointly optimizes the LED packing, circuit and routing, solving a challenging layout problem under strict manufacturing requirements. Unlike paper, PCBs cannot bend beyond a certain point without breaking. Therefore, we introduce parametric cut patterns acting as hinges, designed to allow bending while remaining compact. To tackle the joint optimization of placement, circuit and routing, we propose a specialized algorithm that splits the global problem into one sub-problem per triangle, which is then individually solved.\r\nOur technique generates PCB blueprints in a completely automated way. After being fabricated by a PCB manufacturing service, the boards are bent and glued by the user onto the 3D printed support. We demonstrate our technique on a range of physical models and virtual examples, creating intricate surface light patterns from hundreds of LEDs." acknowledged_ssus: - _id: M-Shop acknowledgement: We thank the reviewers for the valuable feedback. We also thank the Miba Machine Shop at ISTA, PCBWay, and PragoBoard for helping us with fabrication and assembly. This project was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 715767 – MATERIALIZABLE). article_number: '142' article_processing_charge: No article_type: original author: - first_name: Marco full_name: Freire, Marco last_name: Freire - first_name: Manas full_name: Bhargava, Manas id: FF8FA64C-AA6A-11E9-99AD-50D4E5697425 last_name: Bhargava orcid: 0009-0007-6138-6890 - first_name: Camille full_name: Schreck, Camille id: 2B14B676-F248-11E8-B48F-1D18A9856A87 last_name: Schreck - first_name: Pierre-Alexandre full_name: Hugron, Pierre-Alexandre last_name: Hugron - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 - first_name: Sylvain full_name: Lefebvre, Sylvain last_name: Lefebvre citation: ama: 'Freire M, Bhargava M, Schreck C, Hugron P-A, Bickel B, Lefebvre S. PCBend: Light up your 3D shapes with foldable circuit boards. Transactions on Graphics. 2023;42(4). doi:10.1145/3592411' apa: 'Freire, M., Bhargava, M., Schreck, C., Hugron, P.-A., Bickel, B., & Lefebvre, S. (2023). PCBend: Light up your 3D shapes with foldable circuit boards. Transactions on Graphics. Los Angeles, CA, United States: Association for Computing Machinery. https://doi.org/10.1145/3592411' chicago: 'Freire, Marco, Manas Bhargava, Camille Schreck, Pierre-Alexandre Hugron, Bernd Bickel, and Sylvain Lefebvre. “PCBend: Light up Your 3D Shapes with Foldable Circuit Boards.” Transactions on Graphics. Association for Computing Machinery, 2023. https://doi.org/10.1145/3592411.' ieee: 'M. Freire, M. Bhargava, C. Schreck, P.-A. Hugron, B. Bickel, and S. Lefebvre, “PCBend: Light up your 3D shapes with foldable circuit boards,” Transactions on Graphics, vol. 42, no. 4. Association for Computing Machinery, 2023.' ista: 'Freire M, Bhargava M, Schreck C, Hugron P-A, Bickel B, Lefebvre S. 2023. PCBend: Light up your 3D shapes with foldable circuit boards. Transactions on Graphics. 42(4), 142.' mla: 'Freire, Marco, et al. “PCBend: Light up Your 3D Shapes with Foldable Circuit Boards.” Transactions on Graphics, vol. 42, no. 4, 142, Association for Computing Machinery, 2023, doi:10.1145/3592411.' short: M. Freire, M. Bhargava, C. Schreck, P.-A. Hugron, B. Bickel, S. Lefebvre, Transactions on Graphics 42 (2023). conference: end_date: 2023-08-10 location: Los Angeles, CA, United States name: 'SIGGRAPH: Computer Graphics and Interactive Techniques Conference' start_date: 2023-08-06 date_created: 2023-05-22T08:37:04Z date_published: 2023-07-26T00:00:00Z date_updated: 2024-01-29T10:30:49Z day: '26' ddc: - '006' department: - _id: GradSch - _id: BeBi doi: 10.1145/3592411 ec_funded: 1 external_id: isi: - '001044671300108' file: - access_level: open_access checksum: a0b0ba3b36f43a94388e8824613d812a content_type: application/pdf creator: dernst date_created: 2023-06-19T11:02:23Z date_updated: 2023-06-19T11:02:23Z file_id: '13156' file_name: 2023_ACMToG_Freire.pdf file_size: 78940724 relation: main_file success: 1 - access_level: open_access checksum: b9206bbb67af82df49b7e7cdbde3410c content_type: application/pdf creator: dernst date_created: 2023-06-20T12:20:51Z date_updated: 2023-06-20T12:20:51Z file_id: '13157' file_name: 2023_ACMToG_SuppMaterial_Freire.pdf file_size: 34345905 relation: main_file success: 1 file_date_updated: 2023-06-20T12:20:51Z has_accepted_license: '1' intvolume: ' 42' isi: 1 issue: '4' keyword: - PCB design and layout - Mesh geometry models language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version project: - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: Transactions on Graphics publication_identifier: eissn: - 1557-7368 issn: - 0730-0301 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' status: public title: 'PCBend: Light up your 3D shapes with foldable circuit boards' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 42 year: '2023' ...