Correct approximation of stationary distributions
A classical problem for Markov chains is determining their stationary (or steady-state) distribution. This problem has an equally classical solution based on eigenvectors and linear equation systems. However, this approach does not scale to large instances, and iterative solutions are desirable. It turns out that a naive approach, as used by current model checkers, may yield completely wrong results. We present a new approach, which utilizes recent advances in partial exploration and mean payoff computation to obtain a correct, converging approximation.
13993
489-507
489-507
Springer Nature
application/pdf