TY - JOUR
AB - This paper is a collection of results on combinatorial properties of codes for the Z-channel . A Z-channel with error fraction τ takes as input a length- n binary codeword and injects in an adversarial manner up to n τ asymmetric errors, i.e., errors that only zero out bits but do not flip 0’s to 1’s. It is known that the largest ( L - 1)-list-decodable code for the Z-channel with error fraction τ has exponential size (in n ) if τ is less than a critical value that we call the ( L - 1)- list-decoding Plotkin point and has constant size if τ is larger than the threshold. The ( L -1)-list-decoding Plotkin point is known to be L -1/L-1 – L -L/ L-1 , which equals 1/4 for unique-decoding with L -1 = 1. In this paper, we derive various results for the size of the largest codes above and below the list-decoding Plotkin point. In particular, we show that the largest ( L -1)-list-decodable code ε-above the Plotkin point, for any given sufficiently small positive constant ε > 0, has size Θ L (ε -3/2 ) for any L - 1 ≥ 1. We also devise upper and lower bounds on the exponential size of codes below the list-decoding Plotkin point.
AU - Polyanskii, Nikita
AU - Zhang, Yihan
ID - 13269
IS - 10
JF - IEEE Transactions on Information Theory
SN - 0018-9448
TI - Codes for the Z-channel
VL - 69
ER -