{"oa":1,"scopus_import":"1","publisher":"Royal Society of Chemistry","publication_status":"published","title":"SQUID-on-tip with single-electron spin sensitivity for high-field and ultra-low temperature nanomagnetic imaging","month":"01","issue":"5","publication_identifier":{"eissn":["2040-3372"]},"doi":"10.1039/C9NR08578E","_id":"13341","citation":{"chicago":"Anahory, Y., H. R. Naren, E. O. Lachman, S. Buhbut Sinai, A. Uri, L. Embon, E. Yaakobi, et al. “SQUID-on-Tip with Single-Electron Spin Sensitivity for High-Field and Ultra-Low Temperature Nanomagnetic Imaging.” Nanoscale. Royal Society of Chemistry, 2020. https://doi.org/10.1039/C9NR08578E.","mla":"Anahory, Y., et al. “SQUID-on-Tip with Single-Electron Spin Sensitivity for High-Field and Ultra-Low Temperature Nanomagnetic Imaging.” Nanoscale, vol. 12, no. 5, Royal Society of Chemistry, 2020, pp. 3174–82, doi:10.1039/C9NR08578E.","ieee":"Y. Anahory et al., “SQUID-on-tip with single-electron spin sensitivity for high-field and ultra-low temperature nanomagnetic imaging,” Nanoscale, vol. 12, no. 5. Royal Society of Chemistry, pp. 3174–3182, 2020.","ama":"Anahory Y, Naren HR, Lachman EO, et al. SQUID-on-tip with single-electron spin sensitivity for high-field and ultra-low temperature nanomagnetic imaging. Nanoscale. 2020;12(5):3174-3182. doi:10.1039/C9NR08578E","ista":"Anahory Y, Naren HR, Lachman EO, Sinai SB, Uri A, Embon L, Yaakobi E, Myasoedov Y, Huber ME, Klajn R, Zeldov E. 2020. SQUID-on-tip with single-electron spin sensitivity for high-field and ultra-low temperature nanomagnetic imaging. Nanoscale. 12(5), 3174–3182.","apa":"Anahory, Y., Naren, H. R., Lachman, E. O., Sinai, S. B., Uri, A., Embon, L., … Zeldov, E. (2020). SQUID-on-tip with single-electron spin sensitivity for high-field and ultra-low temperature nanomagnetic imaging. Nanoscale. Royal Society of Chemistry. https://doi.org/10.1039/C9NR08578E","short":"Y. Anahory, H.R. Naren, E.O. Lachman, S.B. Sinai, A. Uri, L. Embon, E. Yaakobi, Y. Myasoedov, M.E. Huber, R. Klajn, E. Zeldov, Nanoscale 12 (2020) 3174–3182."},"type":"journal_article","oa_version":"Preprint","date_created":"2023-08-01T08:27:12Z","publication":"Nanoscale","date_published":"2020-01-10T00:00:00Z","article_processing_charge":"No","year":"2020","author":[{"first_name":"Y.","full_name":"Anahory, Y.","last_name":"Anahory"},{"first_name":"H. R.","full_name":"Naren, H. R.","last_name":"Naren"},{"full_name":"Lachman, E. O.","first_name":"E. O.","last_name":"Lachman"},{"full_name":"Sinai, S. Buhbut","first_name":"S. Buhbut","last_name":"Sinai"},{"last_name":"Uri","full_name":"Uri, A.","first_name":"A."},{"last_name":"Embon","first_name":"L.","full_name":"Embon, L."},{"last_name":"Yaakobi","full_name":"Yaakobi, E.","first_name":"E."},{"full_name":"Myasoedov, Y.","first_name":"Y.","last_name":"Myasoedov"},{"last_name":"Huber","full_name":"Huber, M. E.","first_name":"M. E."},{"full_name":"Klajn, Rafal","first_name":"Rafal","id":"8e84690e-1e48-11ed-a02b-a1e6fb8bb53b","last_name":"Klajn"},{"last_name":"Zeldov","full_name":"Zeldov, E.","first_name":"E."}],"language":[{"iso":"eng"}],"page":"3174-3182","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","volume":12,"external_id":{"arxiv":["2001.03342"]},"article_type":"original","status":"public","abstract":[{"text":"Scanning nanoscale superconducting quantum interference devices (nanoSQUIDs)\r\nare of growing interest for highly sensitive quantitative imaging of magnetic,\r\nspintronic, and transport properties of low-dimensional systems. Utilizing\r\nspecifically designed grooved quartz capillaries pulled into a sharp pipette,\r\nwe have fabricated the smallest SQUID-on-tip (SOT) devices with effective\r\ndiameters down to 39 nm. Integration of a resistive shunt in close proximity to\r\nthe pipette apex combined with self-aligned deposition of In and Sn, have\r\nresulted in SOT with a flux noise of 42 n$\\Phi_0$Hz$^{-1/2}$, yielding a record\r\nlow spin noise of 0.29 $\\mu_B$Hz$^{-1/2}$. In addition, the new SOTs function\r\nat sub-Kelvin temperatures and in high magnetic fields of over 2.5 T.\r\nIntegrating the SOTs into a scanning probe microscope allowed us to image the\r\nstray field of a single Fe$_3$O$_4$ nanocube at 300 mK. Our results show that\r\nthe easy magnetization axis direction undergoes a transition from the (111)\r\ndirection at room temperature to an in-plane orientation, which could be\r\nattributed to the Verwey phase transition in Fe$_3$O$_4$.","lang":"eng"}],"date_updated":"2023-08-02T09:35:52Z","intvolume":" 12","quality_controlled":"1","day":"10","extern":"1","main_file_link":[{"open_access":"1","url":"https://doi.org/10.48550/arXiv.2001.03342"}]}