@inproceedings{1374, abstract = {We study two-player zero-sum games over infinite-state graphs equipped with ωB and finitary conditions. Our first contribution is about the strategy complexity, i.e the memory required for winning strategies: we prove that over general infinite-state graphs, memoryless strategies are sufficient for finitary Büchi, and finite-memory suffices for finitary parity games. We then study pushdown games with boundedness conditions, with two contributions. First we prove a collapse result for pushdown games with ωB-conditions, implying the decidability of solving these games. Second we consider pushdown games with finitary parity along with stack boundedness conditions, and show that solving these games is EXPTIME-complete.}, author = {Chatterjee, Krishnendu and Fijalkow, Nathanaël}, booktitle = {22nd EACSL Annual Conference on Computer Science Logic}, location = {Torino, Italy}, pages = {181 -- 196}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Infinite-state games with finitary conditions}}, doi = {10.4230/LIPIcs.CSL.2013.181}, volume = {23}, year = {2013}, }