TY - CONF AB - We study two-player zero-sum games over infinite-state graphs equipped with ωB and finitary conditions. Our first contribution is about the strategy complexity, i.e the memory required for winning strategies: we prove that over general infinite-state graphs, memoryless strategies are sufficient for finitary Büchi, and finite-memory suffices for finitary parity games. We then study pushdown games with boundedness conditions, with two contributions. First we prove a collapse result for pushdown games with ωB-conditions, implying the decidability of solving these games. Second we consider pushdown games with finitary parity along with stack boundedness conditions, and show that solving these games is EXPTIME-complete. AU - Chatterjee, Krishnendu AU - Fijalkow, Nathanaël ID - 1374 T2 - 22nd EACSL Annual Conference on Computer Science Logic TI - Infinite-state games with finitary conditions VL - 23 ER -