--- _id: '1421' abstract: - lang: eng text: 'Hybridization methods enable the analysis of hybrid automata with complex, nonlinear dynamics through a sound abstraction process. Complex dynamics are converted to simpler ones with added noise, and then analysis is done using a reachability method for the simpler dynamics. Several such recent approaches advocate that only "dynamic" hybridization techniquesi.e., those where the dynamics are abstracted on-The-fly during a reachability computation are effective. In this paper, we demonstrate this is not the case, and create static hybridization methods that are more scalable than earlier approaches. The main insight in our approach is that quick, numeric simulations can be used to guide the process, eliminating the need for an exponential number of hybridization domains. Transitions between domains are generally timetriggered, avoiding accumulated error from geometric intersections. We enhance our static technique by combining time-Triggered transitions with occasional space-Triggered transitions, and demonstrate the benefits of the combined approach in what we call mixed-Triggered hybridization. Finally, error modes are inserted to confirm that the reachable states stay within the hybridized regions. The developed techniques can scale to higher dimensions than previous static approaches, while enabling the parallelization of the main performance bottleneck for many dynamic hybridization approaches: The nonlinear optimization required for sound dynamics abstraction. We implement our method as a model transformation pass in the HYST tool, and perform reachability analysis and evaluation using an unmodified version of SpaceEx on nonlinear models with up to six dimensions.' author: - first_name: Stanley full_name: Bak, Stanley last_name: Bak - first_name: Sergiy full_name: Bogomolov, Sergiy id: 369D9A44-F248-11E8-B48F-1D18A9856A87 last_name: Bogomolov orcid: 0000-0002-0686-0365 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Taylor full_name: Johnson, Taylor last_name: Johnson - first_name: Pradyot full_name: Prakash, Pradyot last_name: Prakash citation: ama: 'Bak S, Bogomolov S, Henzinger TA, Johnson T, Prakash P. Scalable static hybridization methods for analysis of nonlinear systems. In: Springer; 2016:155-164. doi:10.1145/2883817.2883837' apa: 'Bak, S., Bogomolov, S., Henzinger, T. A., Johnson, T., & Prakash, P. (2016). Scalable static hybridization methods for analysis of nonlinear systems (pp. 155–164). Presented at the HSCC 2016: International Conference on Hybrid Systems: Computation and Control, Vienna, Austria: Springer. https://doi.org/10.1145/2883817.2883837' chicago: Bak, Stanley, Sergiy Bogomolov, Thomas A Henzinger, Taylor Johnson, and Pradyot Prakash. “Scalable Static Hybridization Methods for Analysis of Nonlinear Systems,” 155–64. Springer, 2016. https://doi.org/10.1145/2883817.2883837. ieee: 'S. Bak, S. Bogomolov, T. A. Henzinger, T. Johnson, and P. Prakash, “Scalable static hybridization methods for analysis of nonlinear systems,” presented at the HSCC 2016: International Conference on Hybrid Systems: Computation and Control, Vienna, Austria, 2016, pp. 155–164.' ista: 'Bak S, Bogomolov S, Henzinger TA, Johnson T, Prakash P. 2016. Scalable static hybridization methods for analysis of nonlinear systems. HSCC 2016: International Conference on Hybrid Systems: Computation and Control, 155–164.' mla: Bak, Stanley, et al. Scalable Static Hybridization Methods for Analysis of Nonlinear Systems. Springer, 2016, pp. 155–64, doi:10.1145/2883817.2883837. short: S. Bak, S. Bogomolov, T.A. Henzinger, T. Johnson, P. Prakash, in:, Springer, 2016, pp. 155–164. conference: end_date: 2016-04-14 location: Vienna, Austria name: 'HSCC 2016: International Conference on Hybrid Systems: Computation and Control' start_date: 2016-04-12 date_created: 2018-12-11T11:51:55Z date_published: 2016-04-11T00:00:00Z date_updated: 2021-01-12T06:50:37Z day: '11' department: - _id: ToHe doi: 10.1145/2883817.2883837 ec_funded: 1 language: - iso: eng month: '04' oa_version: None page: 155 - 164 project: - _id: 25EE3708-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '267989' name: Quantitative Reactive Modeling - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering publication_status: published publisher: Springer publist_id: '5786' quality_controlled: '1' scopus_import: 1 status: public title: Scalable static hybridization methods for analysis of nonlinear systems type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 year: '2016' ...