--- _id: '1432' abstract: - lang: eng text: CA3–CA3 recurrent excitatory synapses are thought to play a key role in memory storage and pattern completion. Whether the plasticity properties of these synapses are consistent with their proposed network functions remains unclear. Here, we examine the properties of spike timing-dependent plasticity (STDP) at CA3–CA3 synapses. Low-frequency pairing of excitatory postsynaptic potentials (EPSPs) and action potentials (APs) induces long-term potentiation (LTP), independent of temporal order. The STDP curve is symmetric and broad (half-width ~150 ms). Consistent with these STDP induction properties, AP–EPSP sequences lead to supralinear summation of spine [Ca2+] transients. Furthermore, afterdepolarizations (ADPs) following APs efficiently propagate into dendrites of CA3 pyramidal neurons, and EPSPs summate with dendritic ADPs. In autoassociative network models, storage and recall are more robust with symmetric than with asymmetric STDP rules. Thus, a specialized STDP induction rule allows reliable storage and recall of information in the hippocampal CA3 network. acknowledgement: 'We thank Jozsef Csicsvari and Nelson Spruston for critically reading the manuscript. We also thank A. Schlögl for programming, F. Marr for technical assistance and E. Kramberger for manuscript editing. ' article_number: '11552' author: - first_name: Rajiv Kumar full_name: Mishra, Rajiv Kumar id: 46CB58F2-F248-11E8-B48F-1D18A9856A87 last_name: Mishra - first_name: Sooyun full_name: Kim, Sooyun id: 394AB1C8-F248-11E8-B48F-1D18A9856A87 last_name: Kim - first_name: José full_name: Guzmán, José id: 30CC5506-F248-11E8-B48F-1D18A9856A87 last_name: Guzmán orcid: 0000-0003-2209-5242 - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 citation: ama: Mishra RK, Kim S, Guzmán J, Jonas PM. Symmetric spike timing-dependent plasticity at CA3–CA3 synapses optimizes storage and recall in autoassociative networks. Nature Communications. 2016;7. doi:10.1038/ncomms11552 apa: Mishra, R. K., Kim, S., Guzmán, J., & Jonas, P. M. (2016). Symmetric spike timing-dependent plasticity at CA3–CA3 synapses optimizes storage and recall in autoassociative networks. Nature Communications. Nature Publishing Group. https://doi.org/10.1038/ncomms11552 chicago: Mishra, Rajiv Kumar, Sooyun Kim, José Guzmán, and Peter M Jonas. “Symmetric Spike Timing-Dependent Plasticity at CA3–CA3 Synapses Optimizes Storage and Recall in Autoassociative Networks.” Nature Communications. Nature Publishing Group, 2016. https://doi.org/10.1038/ncomms11552. ieee: R. K. Mishra, S. Kim, J. Guzmán, and P. M. Jonas, “Symmetric spike timing-dependent plasticity at CA3–CA3 synapses optimizes storage and recall in autoassociative networks,” Nature Communications, vol. 7. Nature Publishing Group, 2016. ista: Mishra RK, Kim S, Guzmán J, Jonas PM. 2016. Symmetric spike timing-dependent plasticity at CA3–CA3 synapses optimizes storage and recall in autoassociative networks. Nature Communications. 7, 11552. mla: Mishra, Rajiv Kumar, et al. “Symmetric Spike Timing-Dependent Plasticity at CA3–CA3 Synapses Optimizes Storage and Recall in Autoassociative Networks.” Nature Communications, vol. 7, 11552, Nature Publishing Group, 2016, doi:10.1038/ncomms11552. short: R.K. Mishra, S. Kim, J. Guzmán, P.M. Jonas, Nature Communications 7 (2016). date_created: 2018-12-11T11:51:59Z date_published: 2016-05-13T00:00:00Z date_updated: 2023-09-07T11:55:25Z day: '13' ddc: - '570' department: - _id: PeJo doi: 10.1038/ncomms11552 ec_funded: 1 file: - access_level: open_access checksum: 7e84d0392348c874d473b62f1042de22 content_type: application/pdf creator: system date_created: 2018-12-12T10:18:33Z date_updated: 2020-07-14T12:44:53Z file_id: '5355' file_name: IST-2016-582-v1+1_ncomms11552.pdf file_size: 4510512 relation: main_file file_date_updated: 2020-07-14T12:44:53Z has_accepted_license: '1' intvolume: ' 7' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '05' oa: 1 oa_version: Published Version project: - _id: 25C26B1E-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P24909-B24 name: Mechanisms of transmitter release at GABAergic synapses - _id: 25C0F108-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '268548' name: Nanophysiology of fast-spiking, parvalbumin-expressing GABAergic interneurons publication: Nature Communications publication_status: published publisher: Nature Publishing Group publist_id: '5766' pubrep_id: '582' quality_controlled: '1' related_material: record: - id: '1396' relation: dissertation_contains status: public scopus_import: 1 status: public title: Symmetric spike timing-dependent plasticity at CA3–CA3 synapses optimizes storage and recall in autoassociative networks tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 7 year: '2016' ...