@inproceedings{14457,
abstract = {Threshold secret sharing allows a dealer to split a secret s into n shares, such that any t shares allow for reconstructing s, but no t-1 shares reveal any information about s. Leakage-resilient secret sharing requires that the secret remains hidden, even when an adversary additionally obtains a limited amount of leakage from every share. Benhamouda et al. (CRYPTO’18) proved that Shamir’s secret sharing scheme is one bit leakage-resilient for reconstruction threshold t≥0.85n and conjectured that the same holds for t = c.n for any constant 0≤c≤1. Nielsen and Simkin (EUROCRYPT’20) showed that this is the best one can hope for by proving that Shamir’s scheme is not secure against one-bit leakage when t0c.n/log(n).
In this work, we strengthen the lower bound of Nielsen and Simkin. We consider noisy leakage-resilience, where a random subset of leakages is replaced by uniformly random noise. We prove a lower bound for Shamir’s secret sharing, similar to that of Nielsen and Simkin, which holds even when a constant fraction of leakages is replaced by random noise. To this end, we first prove a lower bound on the share size of any noisy-leakage-resilient sharing scheme. We then use this lower bound to show that there exist universal constants c1, c2, such that for sufficiently large n it holds that Shamir’s secret sharing scheme is not noisy-leakage-resilient for t≤c1.n/log(n), even when a c2 fraction of leakages are replaced by random noise.
},
author = {Hoffmann, Charlotte and Simkin, Mark},
booktitle = {8th International Conference on Cryptology and Information Security in Latin America},
isbn = {9783031444685},
issn = {1611-3349},
location = {Quito, Ecuador},
pages = {215--228},
publisher = {Springer Nature},
title = {{Stronger lower bounds for leakage-resilient secret sharing}},
doi = {10.1007/978-3-031-44469-2_11},
volume = {14168},
year = {2023},
}