{"title":"Parity-conserving Cooper-pair transport and ideal superconducting diode in planar germanium","citation":{"chicago":"Valentini, Marco, Oliver Sagi, Levon Baghumyan, Thijs de Gijsel, Jason Jung, Stefano Calcaterra, Andrea Ballabio, et al. “Parity-Conserving Cooper-Pair Transport and Ideal Superconducting Diode in Planar Germanium.” Nature Communications. Springer Nature, 2024. https://doi.org/10.1038/s41467-023-44114-0.","ista":"Valentini M, Sagi O, Baghumyan L, de Gijsel T, Jung J, Calcaterra S, Ballabio A, Aguilera Servin JL, Aggarwal K, Janik M, Adletzberger T, Seoane Souto R, Leijnse M, Danon J, Schrade C, Bakkers E, Chrastina D, Isella G, Katsaros G. 2024. Parity-conserving Cooper-pair transport and ideal superconducting diode in planar germanium. Nature Communications. 15, 169.","apa":"Valentini, M., Sagi, O., Baghumyan, L., de Gijsel, T., Jung, J., Calcaterra, S., … Katsaros, G. (2024). Parity-conserving Cooper-pair transport and ideal superconducting diode in planar germanium. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-023-44114-0","short":"M. Valentini, O. Sagi, L. Baghumyan, T. de Gijsel, J. Jung, S. Calcaterra, A. Ballabio, J.L. Aguilera Servin, K. Aggarwal, M. Janik, T. Adletzberger, R. Seoane Souto, M. Leijnse, J. Danon, C. Schrade, E. Bakkers, D. Chrastina, G. Isella, G. Katsaros, Nature Communications 15 (2024).","ieee":"M. Valentini et al., “Parity-conserving Cooper-pair transport and ideal superconducting diode in planar germanium,” Nature Communications, vol. 15. Springer Nature, 2024.","mla":"Valentini, Marco, et al. “Parity-Conserving Cooper-Pair Transport and Ideal Superconducting Diode in Planar Germanium.” Nature Communications, vol. 15, 169, Springer Nature, 2024, doi:10.1038/s41467-023-44114-0.","ama":"Valentini M, Sagi O, Baghumyan L, et al. Parity-conserving Cooper-pair transport and ideal superconducting diode in planar germanium. Nature Communications. 2024;15. doi:10.1038/s41467-023-44114-0"},"_id":"14793","article_processing_charge":"Yes","file_date_updated":"2024-01-17T11:03:00Z","day":"02","abstract":[{"lang":"eng","text":"Superconductor/semiconductor hybrid devices have attracted increasing interest in the past years. Superconducting electronics aims to complement semiconductor technology, while hybrid architectures are at the forefront of new ideas such as topological superconductivity and protected qubits. In this work, we engineer the induced superconductivity in two-dimensional germanium hole gas by varying the distance between the quantum well and the aluminum. We demonstrate a hard superconducting gap and realize an electrically and flux tunable superconducting diode using a superconducting quantum interference device (SQUID). This allows to tune the current phase relation (CPR), to a regime where single Cooper pair tunneling is suppressed, creating a sin(2y) CPR. Shapiro experiments complement this interpretation and the microwave drive allows to create a diode with ≈ 100% efficiency. The reported results open up the path towards integration of spin qubit devices, microwave resonators and (protected) superconducting qubits on the same silicon technology compatible platform."}],"acknowledgement":"We acknowledge Alexander Brinkmann, Alessandro Crippa, Francesco Giazotto, Andrew Higginbotham, Andrea Iorio, Giordano Scappucci, Christian Schonenberger, and Lukas Splitthoff for helpful discussions. We thank Marcel Verheijen for the support in the TEM analysis. This research and related results were made possible with the support of the NOMIS\r\nFoundation. It was supported by the Scientific Service Units of ISTA through resources provided by the MIBA Machine Shop and the nanofabrication facility, the European Union’s Horizon 2020 research andinnovation programme under Grant Agreement No 862046, the HORIZONRIA\r\n101069515 project, the European Innovation Council Pathfinder grant no. 101115315 (QuKiT), and the FWF Projects #P-32235, #P-36507 and #F-8606. For the purpose of open access, the authors have applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission. R.S.S. acknowledges Spanish CM “Talento Program\"\r\nProject No. 2022-T1/IND-24070. J.J. acknowledges European Research Council TOCINA 834290.","tmp":{"name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)","short":"CC BY (4.0)","image":"/images/cc_by.png","legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode"},"user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","scopus_import":"1","article_number":"169","article_type":"original","intvolume":" 15","file":[{"relation":"main_file","file_name":"2024_NatureComm_Valentini.pdf","content_type":"application/pdf","success":1,"creator":"dernst","file_id":"14825","checksum":"ef79173b45eeaf984ffa61ef2f8a52ab","file_size":2336595,"date_created":"2024-01-17T11:03:00Z","date_updated":"2024-01-17T11:03:00Z","access_level":"open_access"}],"has_accepted_license":"1","year":"2024","date_updated":"2024-01-17T11:07:55Z","date_published":"2024-01-02T00:00:00Z","oa":1,"doi":"10.1038/s41467-023-44114-0","month":"01","ec_funded":1,"publication":"Nature Communications","type":"journal_article","oa_version":"Published Version","publication_status":"published","external_id":{"pmid":["38167818"]},"publication_identifier":{"eissn":["2041-1723"]},"status":"public","license":"https://creativecommons.org/licenses/by/4.0/","department":[{"_id":"GeKa"}],"author":[{"last_name":"Valentini","full_name":"Valentini, Marco","first_name":"Marco","id":"C0BB2FAC-D767-11E9-B658-BC13E6697425"},{"last_name":"Sagi","id":"71616374-A8E9-11E9-A7CA-09ECE5697425","first_name":"Oliver","full_name":"Sagi, Oliver"},{"last_name":"Baghumyan","full_name":"Baghumyan, Levon","id":"7aa1f788-b527-11ee-aa9e-e6111a79e0c7","first_name":"Levon"},{"first_name":"Thijs","id":"a0ece13c-b527-11ee-929d-bad130106eee","full_name":"de Gijsel, Thijs","last_name":"de Gijsel"},{"full_name":"Jung, Jason","id":"4C9ACE7A-F248-11E8-B48F-1D18A9856A87","first_name":"Jason","last_name":"Jung"},{"last_name":"Calcaterra","full_name":"Calcaterra, Stefano","first_name":"Stefano"},{"last_name":"Ballabio","first_name":"Andrea","full_name":"Ballabio, Andrea"},{"id":"2A67C376-F248-11E8-B48F-1D18A9856A87","first_name":"Juan L","full_name":"Aguilera Servin, Juan L","orcid":"0000-0002-2862-8372","last_name":"Aguilera Servin"},{"last_name":"Aggarwal","orcid":"0000-0001-9985-9293","full_name":"Aggarwal, Kushagra","first_name":"Kushagra","id":"b22ab905-3539-11eb-84c3-fc159dcd79cb"},{"full_name":"Janik, Marian","id":"396A1950-F248-11E8-B48F-1D18A9856A87","first_name":"Marian","last_name":"Janik"},{"last_name":"Adletzberger","full_name":"Adletzberger, Thomas","first_name":"Thomas","id":"38756BB2-F248-11E8-B48F-1D18A9856A87"},{"first_name":"Rubén","full_name":"Seoane Souto, Rubén","last_name":"Seoane Souto"},{"first_name":"Martin","full_name":"Leijnse, Martin","last_name":"Leijnse"},{"last_name":"Danon","first_name":"Jeroen","full_name":"Danon, Jeroen"},{"last_name":"Schrade","full_name":"Schrade, Constantin","first_name":"Constantin"},{"first_name":"Erik","full_name":"Bakkers, Erik","last_name":"Bakkers"},{"first_name":"Daniel","full_name":"Chrastina, Daniel","last_name":"Chrastina"},{"full_name":"Isella, Giovanni","first_name":"Giovanni","last_name":"Isella"},{"full_name":"Katsaros, Georgios","first_name":"Georgios","id":"38DB5788-F248-11E8-B48F-1D18A9856A87","last_name":"Katsaros","orcid":"0000-0001-8342-202X"}],"publisher":"Springer Nature","language":[{"iso":"eng"}],"acknowledged_ssus":[{"_id":"M-Shop"},{"_id":"NanoFab"}],"ddc":["530"],"quality_controlled":"1","project":[{"_id":"237E5020-32DE-11EA-91FC-C7463DDC885E","name":"TOPOLOGICALLY PROTECTED AND SCALABLE QUANTUM BITS","grant_number":"862046","call_identifier":"H2020"},{"grant_number":"101069515","_id":"34c0acea-11ca-11ed-8bc3-8775e10fd452","name":"Integrated GermaNIum quanTum tEchnology"},{"_id":"bdc2ca30-d553-11ed-ba76-cf164a5bb811","name":"Quantum bits with Kitaev Transmons","grant_number":"101115315"},{"grant_number":"P32235","call_identifier":"FWF","_id":"237B3DA4-32DE-11EA-91FC-C7463DDC885E","name":"Towards scalable hut wire quantum devices"},{"name":"Merging spin and superconducting qubits in planar Ge","_id":"bd8bd29e-d553-11ed-ba76-f0070d4b237a","grant_number":"P36507"},{"grant_number":"F8606","name":"Conventional and unconventional topological superconductors","_id":"34a66131-11ca-11ed-8bc3-a31681c6b03e"}],"date_created":"2024-01-14T23:00:56Z","pmid":1,"volume":15}