{"author":[{"last_name":"Schauer","orcid":"0000-0001-7659-9142","first_name":"Alexandra","id":"30A536BA-F248-11E8-B48F-1D18A9856A87","full_name":"Schauer, Alexandra"},{"first_name":"Kornelija","last_name":"Pranjic-Ferscha","full_name":"Pranjic-Ferscha, Kornelija","id":"4362B3C2-F248-11E8-B48F-1D18A9856A87"},{"full_name":"Hauschild, Robert","id":"4E01D6B4-F248-11E8-B48F-1D18A9856A87","first_name":"Robert","last_name":"Hauschild","orcid":"0000-0001-9843-3522"},{"first_name":"Carl-Philipp J","orcid":"0000-0002-0912-4566","last_name":"Heisenberg","full_name":"Heisenberg, Carl-Philipp J","id":"39427864-F248-11E8-B48F-1D18A9856A87"}],"day":"01","language":[{"iso":"eng"}],"acknowledged_ssus":[{"_id":"Bio"},{"_id":"LifeSc"}],"page":"1-18","year":"2024","oa":1,"abstract":[{"text":"Embryogenesis results from the coordinated activities of different signaling pathways controlling cell fate specification and morphogenesis. In vertebrate gastrulation, both Nodal and BMP signaling play key roles in germ layer specification and morphogenesis, yet their interplay to coordinate embryo patterning with morphogenesis is still insufficiently understood. Here, we took a reductionist approach using zebrafish embryonic explants to study the coordination of Nodal and BMP signaling for embryo patterning and morphogenesis. We show that Nodal signaling triggers explant elongation by inducing mesendodermal progenitors but also suppressing BMP signaling activity at the site of mesendoderm induction. Consistent with this, ectopic BMP signaling in the mesendoderm blocks cell alignment and oriented mesendoderm intercalations, key processes during explant elongation. Translating these ex vivo observations to the intact embryo showed that, similar to explants, Nodal signaling suppresses the effect of BMP signaling on cell intercalations in the dorsal domain, thus allowing robust embryonic axis elongation. These findings suggest a dual function of Nodal signaling in embryonic axis elongation by both inducing mesendoderm and suppressing BMP effects in the dorsal portion of the mesendoderm.","lang":"eng"}],"volume":151,"date_published":"2024-02-01T00:00:00Z","quality_controlled":"1","scopus_import":"1","publication_identifier":{"eissn":["1477-9129"],"issn":["0950-1991"]},"ddc":["570"],"citation":{"ieee":"A. Schauer, K. Pranjic-Ferscha, R. Hauschild, and C.-P. J. Heisenberg, “Robust axis elongation by Nodal-dependent restriction of BMP signaling,” Development, vol. 151, no. 4. The Company of Biologists, pp. 1–18, 2024.","apa":"Schauer, A., Pranjic-Ferscha, K., Hauschild, R., & Heisenberg, C.-P. J. (2024). Robust axis elongation by Nodal-dependent restriction of BMP signaling. Development. The Company of Biologists. https://doi.org/10.1242/dev.202316","ama":"Schauer A, Pranjic-Ferscha K, Hauschild R, Heisenberg C-PJ. Robust axis elongation by Nodal-dependent restriction of BMP signaling. Development. 2024;151(4):1-18. doi:10.1242/dev.202316","chicago":"Schauer, Alexandra, Kornelija Pranjic-Ferscha, Robert Hauschild, and Carl-Philipp J Heisenberg. “Robust Axis Elongation by Nodal-Dependent Restriction of BMP Signaling.” Development. The Company of Biologists, 2024. https://doi.org/10.1242/dev.202316.","short":"A. Schauer, K. Pranjic-Ferscha, R. Hauschild, C.-P.J. Heisenberg, Development 151 (2024) 1–18.","mla":"Schauer, Alexandra, et al. “Robust Axis Elongation by Nodal-Dependent Restriction of BMP Signaling.” Development, vol. 151, no. 4, The Company of Biologists, 2024, pp. 1–18, doi:10.1242/dev.202316.","ista":"Schauer A, Pranjic-Ferscha K, Hauschild R, Heisenberg C-PJ. 2024. Robust axis elongation by Nodal-dependent restriction of BMP signaling. Development. 151(4), 1–18."},"intvolume":" 151","title":"Robust axis elongation by Nodal-dependent restriction of BMP signaling","related_material":{"record":[{"id":"14926","status":"public","relation":"research_data"}]},"article_processing_charge":"Yes (via OA deal)","tmp":{"name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)","legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode","short":"CC BY (4.0)","image":"/images/cc_by.png"},"has_accepted_license":"1","publication":"Development","issue":"4","publication_status":"published","month":"02","date_created":"2024-03-03T23:00:50Z","publisher":"The Company of Biologists","article_type":"original","status":"public","_id":"15048","file":[{"file_size":14839986,"access_level":"open_access","creator":"dernst","success":1,"date_updated":"2024-03-04T07:24:43Z","date_created":"2024-03-04T07:24:43Z","checksum":"6961ea10012bf0d266681f9628bb8f13","file_name":"2024_Development_Schauer.pdf","file_id":"15050","relation":"main_file","content_type":"application/pdf"}],"ec_funded":1,"acknowledgement":"We thank Patrick Müller for sharing the chordintt250 mutant zebrafish line as well as the plasmid for chrd-GFP, Katherine Rogers for sharing the bmp2b plasmid and Andrea Pauli for sharing the draculin plasmid. Diana Pinheiro generated the MZlefty1,2;Tg(sebox::EGFP) line. We are grateful to Patrick Müller, Diana Pinheiro and Katherine Rogers and members of the Heisenberg lab for discussions, technical advice and feedback on the manuscript. We also thank Anna Kicheva and Edouard Hannezo for discussions. We thank the Imaging and Optics Facility as well as the Life Science facility at IST Austria for support with microscopy and fish maintenance.\r\nThis work was supported by a European Research Council Advanced Grant\r\n(MECSPEC 742573 to C.-P.H.). A.S. is a recipient of a DOC Fellowship of the Austrian\r\nAcademy of Sciences at IST Austria. Open Access funding provided by Institute of\r\nScience and Technology Austria. ","file_date_updated":"2024-03-04T07:24:43Z","type":"journal_article","date_updated":"2024-03-04T07:28:25Z","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","project":[{"call_identifier":"H2020","grant_number":"742573","_id":"260F1432-B435-11E9-9278-68D0E5697425","name":"Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation"},{"grant_number":"25239","name":"Mesendoderm specification in zebrafish: The role of extraembryonic tissues","_id":"26B1E39C-B435-11E9-9278-68D0E5697425"}],"oa_version":"Published Version","department":[{"_id":"CaHe"},{"_id":"Bio"}],"doi":"10.1242/dev.202316"}