{"month":"03","citation":{"ieee":"D. H. Vandael and P. M. Jonas, “Structure, biophysics, and circuit function of a ‘giant’ cortical presynaptic terminal,” Science, vol. 383, no. 6687. AAAS, p. eadg6757, 2024.","ama":"Vandael DH, Jonas PM. Structure, biophysics, and circuit function of a “giant” cortical presynaptic terminal. Science. 2024;383(6687):eadg6757. doi:10.1126/science.adg6757","mla":"Vandael, David H., and Peter M. Jonas. “Structure, Biophysics, and Circuit Function of a ‘Giant’ Cortical Presynaptic Terminal.” Science, vol. 383, no. 6687, AAAS, 2024, p. eadg6757, doi:10.1126/science.adg6757.","apa":"Vandael, D. H., & Jonas, P. M. (2024). Structure, biophysics, and circuit function of a “giant” cortical presynaptic terminal. Science. AAAS. https://doi.org/10.1126/science.adg6757","ista":"Vandael DH, Jonas PM. 2024. Structure, biophysics, and circuit function of a ‘giant’ cortical presynaptic terminal. Science. 383(6687), eadg6757.","chicago":"Vandael, David H, and Peter M Jonas. “Structure, Biophysics, and Circuit Function of a ‘Giant’ Cortical Presynaptic Terminal.” Science. AAAS, 2024. https://doi.org/10.1126/science.adg6757.","short":"D.H. Vandael, P.M. Jonas, Science 383 (2024) eadg6757."},"status":"public","language":[{"iso":"eng"}],"date_published":"2024-03-08T00:00:00Z","article_processing_charge":"No","year":"2024","intvolume":" 383","page":"eadg6757","author":[{"first_name":"David H","orcid":"0000-0001-7577-1676","full_name":"Vandael, David H","last_name":"Vandael","id":"3AE48E0A-F248-11E8-B48F-1D18A9856A87"},{"first_name":"Peter M","orcid":"0000-0001-5001-4804","full_name":"Jonas, Peter M","id":"353C1B58-F248-11E8-B48F-1D18A9856A87","last_name":"Jonas"}],"date_created":"2024-03-17T23:00:57Z","external_id":{"pmid":["38452088"]},"article_type":"review","doi":"10.1126/science.adg6757","publication_status":"published","project":[{"call_identifier":"H2020","name":"Biophysics and circuit function of a giant cortical glumatergic synapse","grant_number":"692692","_id":"25B7EB9E-B435-11E9-9278-68D0E5697425"},{"name":"The Wittgenstein Prize","call_identifier":"FWF","grant_number":"Z00312","_id":"25C5A090-B435-11E9-9278-68D0E5697425"},{"name":"Mechanisms of GABA release in hippocampal circuits","_id":"bd88be38-d553-11ed-ba76-81d5a70a6ef5","grant_number":"P36232"}],"scopus_import":"1","publication_identifier":{"eissn":["1095-9203"]},"issue":"6687","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","day":"08","pmid":1,"quality_controlled":"1","title":"Structure, biophysics, and circuit function of a \"giant\" cortical presynaptic terminal","type":"journal_article","department":[{"_id":"PeJo"}],"_id":"15117","ec_funded":1,"volume":383,"publisher":"AAAS","abstract":[{"text":"The hippocampal mossy fiber synapse, formed between axons of dentate gyrus granule cells and dendrites of CA3 pyramidal neurons, is a key synapse in the trisynaptic circuitry of the hippocampus. Because of its comparatively large size, this synapse is accessible to direct presynaptic recording, allowing a rigorous investigation of the biophysical mechanisms of synaptic transmission and plasticity. Furthermore, because of its placement in the very center of the hippocampal memory circuit, this synapse seems to be critically involved in several higher network functions, such as learning, memory, pattern separation, and pattern completion. Recent work based on new technologies in both nanoanatomy and nanophysiology, including presynaptic patch-clamp recording, paired recording, super-resolution light microscopy, and freeze-fracture and “flash-and-freeze” electron microscopy, has provided new insights into the structure, biophysics, and network function of this intriguing synapse. This brings us one step closer to answering a fundamental question in neuroscience: how basic synaptic properties shape higher network computations.","lang":"eng"}],"oa_version":"None","publication":"Science","date_updated":"2024-03-20T07:42:52Z","acknowledgement":"We thank previous students, postdocs, and collaborators, particularly J. Geiger, and (in alphabetical order) H. Alle, J. Bischofberger, C. Borges-Merjane, D. Engel, M. Frotscher, S. Hallermann, M. Heckmann, S. Jamrichova, O. Kim, L. Li, K. Lichter, P. Lin, J. Lübke, Y. Okamoto, C. Pawlu, C. Schmidt-Hieber, N. Spruston, and N. Vyleta for their outstanding experimental contributions. We also thank P. Castillo, J. Geiger, T. Sakaba, S. Siegert, T. Vogels, and J. Watson for critically reading the manuscript, E. Kralli-Beller for text editing, and J. Malikovic and L. Slomianka for useful discussions. We apologize that, due to space constraints, not all relevant papers could be cited.\r\nThis project was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement 692692, AdG “GIANTSYN”) and the Fonds zur Förderung der Wissenschaftlichen Forschung (Z 312-B27, Wittgenstein Award; P 36232-B, stand-alone grant), both to P.J."}