{"month":"02","corr_author":"1","issue":"1","department":[{"_id":"GradSch"},{"_id":"LaEr"}],"isi":1,"article_type":"original","external_id":{"arxiv":["2301.01712"],"isi":["001427953600004"]},"citation":{"mla":"Riabov, Volodymyr. “Mesoscopic Eigenvalue Statistics for Wigner-Type Matrices.” Annales de l’institut Henri Poincare (B) Probability and Statistics, vol. 61, no. 1, Institute of Mathematical Statistics, 2025, pp. 129–54, doi:10.1214/23-AIHP1438.","short":"V. Riabov, Annales de l’institut Henri Poincare (B) Probability and Statistics 61 (2025) 129–154.","ieee":"V. Riabov, “Mesoscopic eigenvalue statistics for Wigner-type matrices,” Annales de l’institut Henri Poincare (B) Probability and Statistics, vol. 61, no. 1. Institute of Mathematical Statistics, pp. 129–154, 2025.","chicago":"Riabov, Volodymyr. “Mesoscopic Eigenvalue Statistics for Wigner-Type Matrices.” Annales de l’institut Henri Poincare (B) Probability and Statistics. Institute of Mathematical Statistics, 2025. https://doi.org/10.1214/23-AIHP1438.","apa":"Riabov, V. (2025). Mesoscopic eigenvalue statistics for Wigner-type matrices. Annales de l’institut Henri Poincare (B) Probability and Statistics. Institute of Mathematical Statistics. https://doi.org/10.1214/23-AIHP1438","ista":"Riabov V. 2025. Mesoscopic eigenvalue statistics for Wigner-type matrices. Annales de l’institut Henri Poincare (B) Probability and Statistics. 61(1), 129–154.","ama":"Riabov V. Mesoscopic eigenvalue statistics for Wigner-type matrices. Annales de l’institut Henri Poincare (B) Probability and Statistics. 2025;61(1):129-154. doi:10.1214/23-AIHP1438"},"OA_type":"green","status":"public","page":"129-154","publisher":"Institute of Mathematical Statistics","project":[{"_id":"62796744-2b32-11ec-9570-940b20777f1d","name":"Random matrices beyond Wigner-Dyson-Mehta","call_identifier":"H2020","grant_number":"101020331"}],"volume":61,"ec_funded":1,"intvolume":" 61","oa":1,"day":"01","acknowledgement":"I would like to express my gratitude to László Erdős for suggesting the project and supervising my work. I am also thankful to Yuanyuan Xu and Oleksii Kolupaiev for many helpful discussions. Furthermore, I am grateful to Guillaume Dubach for translating the abstract into French.\r\nThe author was supported by the ERC Advanced Grant “RMTBeyond” No. 101020331.","publication":"Annales de l'institut Henri Poincare (B) Probability and Statistics","doi":"10.1214/23-AIHP1438","author":[{"last_name":"Riabov","id":"1949f904-edfb-11eb-afb5-e2dfddabb93b","full_name":"Riabov, Volodymyr","first_name":"Volodymyr"}],"main_file_link":[{"open_access":"1","url":"https://doi.org/10.48550/arXiv.2301.01712"}],"title":"Mesoscopic eigenvalue statistics for Wigner-type matrices","date_published":"2025-02-01T00:00:00Z","arxiv":1,"article_processing_charge":"No","type":"journal_article","date_updated":"2025-05-19T13:54:31Z","oa_version":"Preprint","scopus_import":"1","language":[{"iso":"eng"}],"quality_controlled":"1","publication_status":"published","publication_identifier":{"issn":["0246-0203"]},"year":"2025","date_created":"2024-03-20T09:41:04Z","_id":"15128","abstract":[{"text":"We prove a universal mesoscopic central limit theorem for linear eigenvalue statistics of a Wigner-type matrix inside the bulk of the spectrum with compactly supported twice continuously differentiable test functions. The main novel ingredient is an optimal local law for the two-point function $T(z,\\zeta)$ and a general class of related quantities involving two resolvents at nearby spectral parameters.","lang":"eng"},{"lang":"fre","text":"On établit un théorème limite central universel pour les statistiques linéaires mésoscopiques des valeurs propres d’une matrice de type Wigner au milieu du spectre, avec des fonctions de classe \r\n et à support compact. La principale nouveauté de cette approche est qu’elle repose sur une loi locale optimale pour la fonction à deux points $T(z,\\zeta)$ , ainsi que pour une classe plus générale d’observables impliquant deux résolvantes évaluées en des paramètres proches."}],"OA_place":"repository","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87"}