{"file":[{"file_id":"15309","date_updated":"2024-04-10T09:05:49Z","access_level":"open_access","relation":"main_file","checksum":"529e3f97ae5c5f5cc743c4fc130c9440","creator":"dernst","file_name":"2021_mBio_Le.pdf","success":1,"content_type":"application/pdf","file_size":1344204,"date_created":"2024-04-10T09:05:49Z"}],"year":"2021","date_updated":"2024-04-10T09:13:59Z","article_processing_charge":"Yes","day":"31","file_date_updated":"2024-04-10T09:05:49Z","has_accepted_license":"1","date_published":"2021-08-31T00:00:00Z","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","type":"journal_article","oa":1,"tmp":{"name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)","short":"CC BY (4.0)","legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode","image":"/images/cc_by.png"},"article_number":"676","doi":"10.1128/mbio.00676-21","status":"public","external_id":{"pmid":["34253054"]},"abstract":[{"text":"Various toxic compounds disrupt bacterial physiology. While bacteria harbor defense mechanisms to mitigate the toxicity, these mechanisms are often coupled to the physiological state of the cells and become ineffective when the physiology is severely disrupted.","lang":"eng"}],"department":[{"_id":"CaGu"}],"date_created":"2024-04-03T07:51:57Z","issue":"4","month":"08","publication_identifier":{"issn":["2150-7511"]},"quality_controlled":"1","article_type":"original","language":[{"iso":"eng"}],"publication":"mBio","oa_version":"Published Version","license":"https://creativecommons.org/licenses/by/4.0/","intvolume":" 12","volume":12,"keyword":["Virology","Microbiology"],"author":[{"full_name":"Le, Dai","first_name":"Dai","last_name":"Le"},{"full_name":"Krasnopeeva, Ekaterina","first_name":"Ekaterina","last_name":"Krasnopeeva","id":"1F1EE44A-BF83-11EA-B3C1-BB9CC619BF3A"},{"last_name":"Sinjab","full_name":"Sinjab, Faris","first_name":"Faris"},{"last_name":"Pilizota","full_name":"Pilizota, Teuta","first_name":"Teuta"},{"last_name":"Kim","full_name":"Kim, Minsu","first_name":"Minsu"}],"publisher":"American Society for Microbiology","publication_status":"published","citation":{"mla":"Le, Dai, et al. “Active Efflux Leads to Heterogeneous Dissipation of Proton Motive Force by Protonophores in Bacteria.” MBio, vol. 12, no. 4, 676, American Society for Microbiology, 2021, doi:10.1128/mbio.00676-21.","apa":"Le, D., Krasnopeeva, E., Sinjab, F., Pilizota, T., & Kim, M. (2021). Active efflux leads to heterogeneous dissipation of proton motive force by protonophores in bacteria. MBio. American Society for Microbiology. https://doi.org/10.1128/mbio.00676-21","ieee":"D. Le, E. Krasnopeeva, F. Sinjab, T. Pilizota, and M. Kim, “Active efflux leads to heterogeneous dissipation of proton motive force by protonophores in bacteria,” mBio, vol. 12, no. 4. American Society for Microbiology, 2021.","ama":"Le D, Krasnopeeva E, Sinjab F, Pilizota T, Kim M. Active efflux leads to heterogeneous dissipation of proton motive force by protonophores in bacteria. mBio. 2021;12(4). doi:10.1128/mbio.00676-21","chicago":"Le, Dai, Ekaterina Krasnopeeva, Faris Sinjab, Teuta Pilizota, and Minsu Kim. “Active Efflux Leads to Heterogeneous Dissipation of Proton Motive Force by Protonophores in Bacteria.” MBio. American Society for Microbiology, 2021. https://doi.org/10.1128/mbio.00676-21.","short":"D. Le, E. Krasnopeeva, F. Sinjab, T. Pilizota, M. Kim, MBio 12 (2021).","ista":"Le D, Krasnopeeva E, Sinjab F, Pilizota T, Kim M. 2021. Active efflux leads to heterogeneous dissipation of proton motive force by protonophores in bacteria. mBio. 12(4), 676."},"pmid":1,"_id":"15270","ddc":["570"],"title":"Active efflux leads to heterogeneous dissipation of proton motive force by protonophores in bacteria"}