{"OA_type":"hybrid","corr_author":"1","scopus_import":"1","article_processing_charge":"Yes (via OA deal)","file":[{"creator":"dernst","success":1,"content_type":"application/pdf","date_created":"2025-01-09T09:36:41Z","date_updated":"2025-01-09T09:36:41Z","file_id":"18803","checksum":"fbcc9cc7bf274f024e4f4afc9c208f96","relation":"main_file","file_size":566963,"file_name":"2024_CommPureApplMath_Erdoes.pdf","access_level":"open_access"}],"abstract":[{"text":"We consider N×N non-Hermitian random matrices of the form X+A, where A is a general deterministic matrix and N−−√X consists of independent entries with zero mean, unit variance, and bounded densities. For this ensemble, we prove (i) a Wegner estimate, i.e. that the local density of eigenvalues is bounded by N1+o(1) and (ii) that the expected condition number of any bulk eigenvalue is bounded by N1+o(1); both results are optimal up to the factor No(1). The latter result complements the very recent matching lower bound obtained in [15] (arXiv:2301.03549) and improves the N-dependence of the upper bounds in [5,6,32] (arXiv:1906.11819, arXiv:2005.08930, arXiv:2005.08908). Our main ingredient, a near-optimal lower tail estimate for the small singular values of X+A−z, is of independent interest.","lang":"eng"}],"external_id":{"arxiv":["2301.04981"]},"author":[{"id":"4DBD5372-F248-11E8-B48F-1D18A9856A87","last_name":"Erdös","first_name":"László","full_name":"Erdös, László","orcid":"0000-0001-5366-9603"},{"id":"dd216c0a-c1f9-11eb-beaf-e9ea9d2de76d","last_name":"Ji","first_name":"Hong Chang","full_name":"Ji, Hong Chang"}],"oa":1,"publisher":"Wiley","tmp":{"short":"CC BY-NC-ND (4.0)","legal_code_url":"https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode","image":"/images/cc_by_nc_nd.png","name":"Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)"},"publication_identifier":{"eissn":["1097-0312"],"issn":["0010-3640"]},"volume":77,"publication_status":"published","doi":"10.1002/cpa.22201","file_date_updated":"2025-01-09T09:36:41Z","month":"09","department":[{"_id":"LaEr"}],"date_updated":"2025-01-09T09:37:24Z","license":"https://creativecommons.org/licenses/by-nc-nd/4.0/","title":"Wegner estimate and upper bound on the eigenvalue condition number of non-Hermitian random matrices","day":"01","acknowledgement":"László Erdős is partially supported by ERC Advanced Grant “RMTBeyond” No. 101020331. Hong Chang Ji is supported by ERC Advanced Grant “RMTBeyond” No. 101020331.","language":[{"iso":"eng"}],"year":"2024","publication":"Communications on Pure and Applied Mathematics","OA_place":"publisher","page":"3785-3840","arxiv":1,"date_published":"2024-09-01T00:00:00Z","project":[{"_id":"62796744-2b32-11ec-9570-940b20777f1d","name":"Random matrices beyond Wigner-Dyson-Mehta","grant_number":"101020331","call_identifier":"H2020"}],"quality_controlled":"1","status":"public","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","ddc":["510"],"type":"journal_article","citation":{"ieee":"L. Erdös and H. C. Ji, “Wegner estimate and upper bound on the eigenvalue condition number of non-Hermitian random matrices,” Communications on Pure and Applied Mathematics, vol. 77, no. 9. Wiley, pp. 3785–3840, 2024.","mla":"Erdös, László, and Hong Chang Ji. “Wegner Estimate and Upper Bound on the Eigenvalue Condition Number of Non-Hermitian Random Matrices.” Communications on Pure and Applied Mathematics, vol. 77, no. 9, Wiley, 2024, pp. 3785–840, doi:10.1002/cpa.22201.","chicago":"Erdös, László, and Hong Chang Ji. “Wegner Estimate and Upper Bound on the Eigenvalue Condition Number of Non-Hermitian Random Matrices.” Communications on Pure and Applied Mathematics. Wiley, 2024. https://doi.org/10.1002/cpa.22201.","ama":"Erdös L, Ji HC. Wegner estimate and upper bound on the eigenvalue condition number of non-Hermitian random matrices. Communications on Pure and Applied Mathematics. 2024;77(9):3785-3840. doi:10.1002/cpa.22201","short":"L. Erdös, H.C. Ji, Communications on Pure and Applied Mathematics 77 (2024) 3785–3840.","apa":"Erdös, L., & Ji, H. C. (2024). Wegner estimate and upper bound on the eigenvalue condition number of non-Hermitian random matrices. Communications on Pure and Applied Mathematics. Wiley. https://doi.org/10.1002/cpa.22201","ista":"Erdös L, Ji HC. 2024. Wegner estimate and upper bound on the eigenvalue condition number of non-Hermitian random matrices. Communications on Pure and Applied Mathematics. 77(9), 3785–3840."},"ec_funded":1,"date_created":"2024-05-12T22:01:02Z","has_accepted_license":"1","article_type":"original","oa_version":"Published Version","_id":"15378","intvolume":" 77","issue":"9"}