--- _id: '1694' abstract: - lang: eng text: "\r\nWe introduce quantitative timed refinement and timed simulation (directed) metrics, incorporating zenoness checks, for timed systems. These metrics assign positive real numbers which quantify the timing mismatches between two timed systems, amongst non-zeno runs. We quantify timing mismatches in three ways: (1) the maximal timing mismatch that can arise, (2) the “steady-state” maximal timing mismatches, where initial transient timing mismatches are ignored; and (3) the (long-run) average timing mismatches amongst two systems. These three kinds of mismatches constitute three important types of timing differences. Our event times are the global times, measured from the start of the system execution, not just the time durations of individual steps. We present algorithms over timed automata for computing the three quantitative simulation distances to within any desired degree of accuracy. In order to compute the values of the quantitative simulation distances, we use a game theoretic formulation. We introduce two new kinds of objectives for two player games on finite-state game graphs: (1) eventual debit-sum level objectives, and (2) average debit-sum level objectives. We present algorithms for computing the optimal values for these objectives in graph games, and then use these algorithms to compute the values of the timed simulation distances over timed automata.\r\n" author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Vinayak full_name: Prabhu, Vinayak last_name: Prabhu citation: ama: Chatterjee K, Prabhu V. Quantitative temporal simulation and refinement distances for timed systems. IEEE Transactions on Automatic Control. 2015;60(9):2291-2306. doi:10.1109/TAC.2015.2404612 apa: Chatterjee, K., & Prabhu, V. (2015). Quantitative temporal simulation and refinement distances for timed systems. IEEE Transactions on Automatic Control. IEEE. https://doi.org/10.1109/TAC.2015.2404612 chicago: Chatterjee, Krishnendu, and Vinayak Prabhu. “Quantitative Temporal Simulation and Refinement Distances for Timed Systems.” IEEE Transactions on Automatic Control. IEEE, 2015. https://doi.org/10.1109/TAC.2015.2404612. ieee: K. Chatterjee and V. Prabhu, “Quantitative temporal simulation and refinement distances for timed systems,” IEEE Transactions on Automatic Control, vol. 60, no. 9. IEEE, pp. 2291–2306, 2015. ista: Chatterjee K, Prabhu V. 2015. Quantitative temporal simulation and refinement distances for timed systems. IEEE Transactions on Automatic Control. 60(9), 2291–2306. mla: Chatterjee, Krishnendu, and Vinayak Prabhu. “Quantitative Temporal Simulation and Refinement Distances for Timed Systems.” IEEE Transactions on Automatic Control, vol. 60, no. 9, IEEE, 2015, pp. 2291–306, doi:10.1109/TAC.2015.2404612. short: K. Chatterjee, V. Prabhu, IEEE Transactions on Automatic Control 60 (2015) 2291–2306. date_created: 2018-12-11T11:53:30Z date_published: 2015-02-24T00:00:00Z date_updated: 2021-01-12T06:52:34Z day: '24' department: - _id: KrCh doi: 10.1109/TAC.2015.2404612 ec_funded: 1 intvolume: ' 60' issue: '9' language: - iso: eng month: '02' oa_version: None page: 2291 - 2306 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: IEEE Transactions on Automatic Control publication_status: published publisher: IEEE publist_id: '5450' quality_controlled: '1' scopus_import: 1 status: public title: Quantitative temporal simulation and refinement distances for timed systems type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 60 year: '2015' ...