{"language":[{"iso":"eng"}],"date_updated":"2024-06-04T07:03:02Z","publication":"bioRxiv","status":"public","date_published":"2022-06-15T00:00:00Z","_id":"17115","publication_status":"published","main_file_link":[{"url":"https://doi.org/10.1101/2022.06.15.496202","open_access":"1"}],"publisher":"Cold Spring Harbor Laboratory","title":"Modes of inhibition used by phage anti-CRISPRs to evade type I-C Cascade","year":"2022","type":"preprint","date_created":"2024-06-04T06:43:30Z","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","oa_version":"Preprint","extern":"1","doi":"10.1101/2022.06.15.496202","author":[{"full_name":"O’Brien, Roisin E.","first_name":"Roisin E.","last_name":"O’Brien"},{"full_name":"Bravo, Jack Peter Kelly","id":"96aecfa5-8931-11ee-af30-aa6a5d6eee0e","orcid":"0000-0003-0456-0753","first_name":"Jack Peter Kelly","last_name":"Bravo"},{"full_name":"Ramos, Delisa","last_name":"Ramos","first_name":"Delisa"},{"last_name":"Hibshman","first_name":"Grace N.","full_name":"Hibshman, Grace N."},{"full_name":"Wright, Jacquelyn T.","first_name":"Jacquelyn T.","last_name":"Wright"},{"full_name":"Taylor, David W.","first_name":"David W.","last_name":"Taylor"}],"article_processing_charge":"No","oa":1,"day":"15","citation":{"mla":"O’Brien, Roisin E., et al. “Modes of Inhibition Used by Phage Anti-CRISPRs to Evade Type I-C Cascade.” BioRxiv, Cold Spring Harbor Laboratory, 2022, doi:10.1101/2022.06.15.496202.","short":"R.E. O’Brien, J.P.K. Bravo, D. Ramos, G.N. Hibshman, J.T. Wright, D.W. Taylor, BioRxiv (2022).","apa":"O’Brien, R. E., Bravo, J. P. K., Ramos, D., Hibshman, G. N., Wright, J. T., & Taylor, D. W. (2022). Modes of inhibition used by phage anti-CRISPRs to evade type I-C Cascade. bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2022.06.15.496202","ieee":"R. E. O’Brien, J. P. K. Bravo, D. Ramos, G. N. Hibshman, J. T. Wright, and D. W. Taylor, “Modes of inhibition used by phage anti-CRISPRs to evade type I-C Cascade,” bioRxiv. Cold Spring Harbor Laboratory, 2022.","ista":"O’Brien RE, Bravo JPK, Ramos D, Hibshman GN, Wright JT, Taylor DW. 2022. Modes of inhibition used by phage anti-CRISPRs to evade type I-C Cascade. bioRxiv, 10.1101/2022.06.15.496202.","ama":"O’Brien RE, Bravo JPK, Ramos D, Hibshman GN, Wright JT, Taylor DW. Modes of inhibition used by phage anti-CRISPRs to evade type I-C Cascade. bioRxiv. 2022. doi:10.1101/2022.06.15.496202","chicago":"O’Brien, Roisin E., Jack Peter Kelly Bravo, Delisa Ramos, Grace N. Hibshman, Jacquelyn T. Wright, and David W. Taylor. “Modes of Inhibition Used by Phage Anti-CRISPRs to Evade Type I-C Cascade.” BioRxiv. Cold Spring Harbor Laboratory, 2022. https://doi.org/10.1101/2022.06.15.496202."},"month":"06","abstract":[{"text":"Cascades are RNA-guided multi-subunit CRISPR-Cas surveillances complexes that target foreign nucleic acids for destruction. Here, we present a 2.9-Å resolution cryo-electron (cryo-EM) structure of the D. vulgaris type I-C Cascade bound to a double-stranded (ds)DNA target. Our data shows how the 5’-TTC-3’ protospacer adjacent motif (PAM) sequence is recognized, and provides a unique mechanism through which the displaced, single-stranded non-target strand (NTS) is stabilized via stacking interactions with protein subunits in order to favor R-loop formation and prevent dsDNA re-annealing. Additionally, we provide structural insights into how diverse anti-CRISPR (Acr) proteins utilize distinct strategies to achieve a shared mechanism of type I-C Cascade inhibition by blocking initial DNA binding. These observations provide a structural basis for directional R-loop formation and reveal how divergent Acr proteins have converged upon common molecular mechanisms to efficiently shut down CRISPR immunity.","lang":"eng"}]}