{"publisher":"Association for Computing Machinery","article_processing_charge":"Yes (via OA deal)","quality_controlled":"1","scopus_import":"1","title":"Fully automated selfish mining analysis in efficient proof systems blockchains","citation":{"chicago":"Chatterjee, Krishnendu, Amirali Ebrahimzadeh, Mehrdad Karrabi, Krzysztof Z Pietrzak, Michelle X Yeo, and Dorde Zikelic. “Fully Automated Selfish Mining Analysis in Efficient Proof Systems Blockchains.” In Proceedings of the 43rd Annual ACM Symposium on Principles of Distributed Computing, 268–78. Association for Computing Machinery, 2024. https://doi.org/10.1145/3662158.3662769.","mla":"Chatterjee, Krishnendu, et al. “Fully Automated Selfish Mining Analysis in Efficient Proof Systems Blockchains.” Proceedings of the 43rd Annual ACM Symposium on Principles of Distributed Computing, Association for Computing Machinery, 2024, pp. 268–78, doi:10.1145/3662158.3662769.","short":"K. Chatterjee, A. Ebrahimzadeh, M. Karrabi, K.Z. Pietrzak, M.X. Yeo, D. Zikelic, in:, Proceedings of the 43rd Annual ACM Symposium on Principles of Distributed Computing, Association for Computing Machinery, 2024, pp. 268–278.","ista":"Chatterjee K, Ebrahimzadeh A, Karrabi M, Pietrzak KZ, Yeo MX, Zikelic D. 2024. Fully automated selfish mining analysis in efficient proof systems blockchains. Proceedings of the 43rd Annual ACM Symposium on Principles of Distributed Computing. PODC: Symposium on Principles of Distributed Computing, 268–278.","ama":"Chatterjee K, Ebrahimzadeh A, Karrabi M, Pietrzak KZ, Yeo MX, Zikelic D. Fully automated selfish mining analysis in efficient proof systems blockchains. In: Proceedings of the 43rd Annual ACM Symposium on Principles of Distributed Computing. Association for Computing Machinery; 2024:268-278. doi:10.1145/3662158.3662769","ieee":"K. Chatterjee, A. Ebrahimzadeh, M. Karrabi, K. Z. Pietrzak, M. X. Yeo, and D. Zikelic, “Fully automated selfish mining analysis in efficient proof systems blockchains,” in Proceedings of the 43rd Annual ACM Symposium on Principles of Distributed Computing, Nantes, France, 2024, pp. 268–278.","apa":"Chatterjee, K., Ebrahimzadeh, A., Karrabi, M., Pietrzak, K. Z., Yeo, M. X., & Zikelic, D. (2024). Fully automated selfish mining analysis in efficient proof systems blockchains. In Proceedings of the 43rd Annual ACM Symposium on Principles of Distributed Computing (pp. 268–278). Nantes, France: Association for Computing Machinery. https://doi.org/10.1145/3662158.3662769"},"acknowledgement":"This work was supported in part by the ERC-2020-CoG 863818 (FoRM-SMArt) grant and the MOE-T2EP20122-0014 (Data-Driven Distributed Algorithms) grant.\r\n","language":[{"iso":"eng"}],"page":"268-278","corr_author":"1","ec_funded":1,"date_published":"2024-06-17T00:00:00Z","author":[{"orcid":"0000-0002-4561-241X","first_name":"Krishnendu","full_name":"Chatterjee, Krishnendu","id":"2E5DCA20-F248-11E8-B48F-1D18A9856A87","last_name":"Chatterjee"},{"full_name":"Ebrahimzadeh, Amirali","first_name":"Amirali","last_name":"Ebrahimzadeh"},{"last_name":"Karrabi","id":"67638922-f394-11eb-9cf6-f20423e08757","full_name":"Karrabi, Mehrdad","first_name":"Mehrdad"},{"last_name":"Pietrzak","id":"3E04A7AA-F248-11E8-B48F-1D18A9856A87","first_name":"Krzysztof Z","full_name":"Pietrzak, Krzysztof Z","orcid":"0000-0002-9139-1654"},{"id":"2D82B818-F248-11E8-B48F-1D18A9856A87","last_name":"Yeo","orcid":"0009-0001-3676-4809","full_name":"Yeo, Michelle X","first_name":"Michelle X"},{"last_name":"Zikelic","id":"294AA7A6-F248-11E8-B48F-1D18A9856A87","full_name":"Zikelic, Dorde","first_name":"Dorde","orcid":"0000-0002-4681-1699"}],"external_id":{"arxiv":["2405.04420"]},"_id":"17328","abstract":[{"text":"We study selfish mining attacks in longest-chain blockchains like Bitcoin, but where the proof of work is replaced with efficient proof systems - like proofs of stake or proofs of space - and consider the problem of computing an optimal selfish mining attack which maximizes expected relative revenue of the adversary, thus minimizing the chain quality. To this end, we propose a novel selfish mining attack that aims to maximize this objective and formally model the attack as a Markov decision process (MDP). We then present a formal analysis procedure which computes an ϵ-tight lower bound on the optimal expected relative revenue in the MDP and a strategy that achieves this ϵ-tight lower bound, where ϵ > 0 may be any specified precision. Our analysis is fully automated and provides formal guarantees on the correctness. We evaluate our selfish mining attack and observe that it achieves superior expected relative revenue compared to two considered baselines.\r\nIn concurrent work [Sarenche FC'24] does an automated analysis on selfish mining in predictable longest-chain blockchains based on efficient proof systems. Predictable means the randomness for the challenges is fixed for many blocks (as used e.g., in Ouroboros), while we consider unpredictable (Bitcoin-like) chains where the challenge is derived from the previous block.","lang":"eng"}],"ddc":["000"],"conference":{"name":"PODC: Symposium on Principles of Distributed Computing","end_date":"2024-06-21","start_date":"2024-06-17","location":"Nantes, France"},"oa_version":"Published Version","type":"conference","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","file":[{"file_name":"2024_ACM_Chatterjee.pdf","content_type":"application/pdf","checksum":"6122bd97b42751ff81c452a19970f67d","date_updated":"2024-07-29T07:18:12Z","creator":"dernst","access_level":"open_access","file_size":832034,"relation":"main_file","success":1,"file_id":"17334","date_created":"2024-07-29T07:18:12Z"}],"publication_status":"published","publication_identifier":{"isbn":["9798400706684"]},"department":[{"_id":"KrCh"},{"_id":"KrPi"}],"status":"public","date_updated":"2024-07-29T07:19:33Z","oa":1,"file_date_updated":"2024-07-29T07:18:12Z","month":"06","doi":"10.1145/3662158.3662769","day":"17","has_accepted_license":"1","date_created":"2024-07-28T22:01:10Z","project":[{"grant_number":"863818","call_identifier":"H2020","name":"Formal Methods for Stochastic Models: Algorithms and Applications","_id":"0599E47C-7A3F-11EA-A408-12923DDC885E"}],"year":"2024","publication":" Proceedings of the 43rd Annual ACM Symposium on Principles of Distributed Computing","tmp":{"legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode","name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)","image":"/images/cc_by.png","short":"CC BY (4.0)"}}